
A NEW DEVICE FOR ESTIMATING LOCAL AREA ENLISTMENT MARKET POTENTIALU) NAVAL POSTGRADUATE SCHOOL MONTEREY CA G D CITIZEN JUN 85 AD-A159 538 1/2 UNCLASSIFIED F/G 5/9 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A NEW DEVICE FOR ESTIMATING LOCAL AREA ENLISTMENT MARKET POTENTIAL

by

Gregory Dale Citizen

June 1985

Thesis Advisor:

Jules I. Borack

Approved for public release; distribution is unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	ADA159538	
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
		Master's Thesis
A New Device for Estimating		June, 1985
Local Area Enlistment Market Pote	ential	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		S. CONTRACT OR GRANT NUMBER(s)
Gregory Dale Citizen		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS
Naval Postgraduate School		
Monterey, California 93943-5100		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Postgraduate School		June, 1985
Monterey, California 93943-5100		13. NUMBER OF PAGES 125
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	18. SECURITY CLASS. (of this report)
		ISA DECLASSIFICATION/DOWNGRADING
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>
Approved for public release; dist	ribution is unl	imited.
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, il different fra	en Report)
19. SUPPLEMENTARY NOTES		
16. SUPPLEMENTANT NOTES		
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number;	
Enlistent Supply Estimates, The I	Effect of Intent	ion Data on Enlistment Supply
Estimates of Enlistment Market Po	otential.	
	,	
20. ABSTRACT (Continue on reverse side if necessary and	i identify by block number)	
This thesis investigates an a		od for estimating enlistment
market potential. The method pro		

stated intentions to join the military obtained from the Youth Attitude Tracking Study (YATS). Local area estimates of application potential are determined for general military service and for each of the four larger

DO 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

brunches, i.e., Army, Navy, Air Force and Marine Corps.

(Block 20, Cont.)

The main conclusions of the study are: a) Reasonable estimates of enlistment market potential can be obtained via a method which is relatively independent of past accessions, and b) Separate estimates of local area market potential should be determined for racial and age subgroups. **Exercise**:

S N 0102- LF- 014- 6601

Approved for public release; distribution is unlimited.

A New Device for Estimating Local Area Enlistment Market Potential

ρÀ

Gregory D. Citizen
Captain, United States Army
B.S., McNeese State University, 1976

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL June 1985

	a. a. a.	A1	
Author:	Dregory Cityen	CITIZEN	Oric
Approved by:	J. t. Borack, The	esis Kivisor	COPY
	J. W. Thomas,	_	
	W. R. Greer, Control of Administration	hairman, strative Science	
	V I-M.	0 11	
	Rneale I. M. Dean of Information and	id Polity Science	es

ABSTRACT

This thesis investigates an alternative method for estimating enlistment market potential. The method proposed is lased upon survey respondents stated intentions to join the military obtained from the Youth Attitude Tracking Study (YATS). Local area estimates of application potential are determined for general military service and for each of the four larger branches, i.e., Army, Navy, Air Force and Marine Corps.

The main conclusions of the study are: a) Reasonable estimates of enlistment market potential can be obtained via a method which is relatively independent of past accessions, and b) Separate estimates of local area market potential should be determine for racial and age subgroups.

TABLE OF CONTENTS

I.	INTE	ROD	UC	[I	ON	A !	CF	LI	TE	RA	T	JR E	R	EV	IE	ų.	•	•	•	•	•	•	•	•	11
	A.	FR	OBI	LEI	M .	ANI) 1	3 A C	KG	RC	U	ID	•		•		•				•	•	•	•	11
	₿.	03	JEO	CT.	IV:	Ē	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	21
II.	DESC	:LI	PT:	ΙO	N (ΟF	DI	AT E	A F	'II	E	•	•	•		•	•		•	•	•	•		•	22
III.	METH	IC D	OLO) G	Y	•	•		•		•	•	•		•	•	•		•		•		•	•	26
	λ.	ES	TI	MA:	TI(O N	AS	sst	JM P	TI	O	15	•				•	•	•	•	•	•			27
	В.	ES	TI	1 A ?	r I (N C	PI	60C	ED	UI	E					•	•			•			•		29
	С.	MO	DEI	LI	DΞ,	۷FI	OI	PME	nI	•			•	•		•	•		•	•		•			33
		1.	1	App	91 .	ica	ıti	lon	M	lod	le]	L	•		•		•			•		•	•	•	34
		2.	1	[I:	te:	nt	Mc	ođe	1	•	•	•	•		•	•		•		•	•	•	•	•	34
IV.	EESU	ILT	S			•		•	•			•					•	•		•		•	•		35
	A.	LO	CAI	i i	AR:	ΕA	I	NT E	ERE	ะรา	. I	ESI	IM	AI	ES	5	•								35
	ī.	LO	CAI	i i	AR:	ΕA	ΑE	PI	JIC	AZ	CIC	N	PΓ	TE	NI	ΊĀ	L	ES	TI	MA	TF	'S	•		35
	С.	AP	PL:	IC	AT:	IOI	i P	1C I	EL	. I	252	II	AI	ES	;										50
	٥.	AP.	PL:	IC	A T	IOI	1 8	100	EL	, Ē	RI	EDI	CI	10	NS.	;	•								51
	E.	IM	ΙZΙ	NT	M	o D I	EL	ES	TI	MA	TI	25													56
	Γ.	IN	TE!	T	MO	ODE	L	25	ED	10	T	101	ıs				•								56
	G.	្តប	ALI	IT:	Y !	MCI	EI	LE	SI	'II	1 A 7	ES	•												62
	н.	្ជប	A L :	T	Y I	MOI	EI	L E	RE	DI	C	II	N S	;					•				•	•	62
7.	CC NC	LU	SIO	NC	s i	a ni) F	EC	OM	i M E	ENI	AI	ΙC) NS	3										64
	λ.		N C I																						64
	E.		cei		_			ons	;																65
		_																				•	-	_	
Y55 EN DI	IX A:	:	ID)	EN'	TI:																				
			ARI	E AS	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	67
APPENDI	IX E:		ов:	SE!	R V	ΞD	AN	N D	ΕX	PE	ec:		N	UM	188	ER	OF	,							
			IN	DI	VI:	DIJ	ALS	s 7	i H C) <i>P</i>	191	2L 1	E) ř	OF		IL	II	'AR	Y					
			SE	? ∀	T (*)	F							_		_								_		73

APPENDIX C:	OBSERVED AND EXPECTED NUMBER OF	
	INDIVIDUALS BY INTENT LEVEL	79
APPENDIX D:	APPLICATION PATES BY INTENT AND SERVICE	
	OVER TIME	85
APPENDIX E:	LOCAL AREA SAMPLE SIZE AND NATIONAL	
	INTEREST LEVELS BY AGE	93
APPENDIX F:	INITIAL APPLICATION MODEL ESTIMATES	98
APPENDIX G:	INITIAL POSITIVE PROPENSITY MODEL	
	ESTIMATES	106
APPENDIX H:	QUALITY MODEL ESTIMATES AND RESULTS	110
LIST OF REFE	PENCES	123
THITTAL DIST	RIBUTION LIST	125

LIST OF TABLES

I	Summary of Econometric Models Developed for	
	Studying NPS Male Enlistments	3
II	Reenlistment Rates by Survey Reenlistment	
	Intention	6
III	Enlistment Rates for Composite Intention	
	Measure	9
IV	Data Sets	4
V	Background Characteristics for All	
	Respondents and Respondents Who Took Written	
	Test	4
πŢ	Application Rates by Survey Enlistment	
	Intention	5
VI.I	Summary of Variables (Application Models) 3	0
AIII	Summary of Variables (Propensity Model) 3	2
XI	Local Area Interest Estimates (Mideast) 3	7
X	Local Area Interest Estimates (Northeast) 3	8
XI	Local Area Interest Estimates (Northwest) 3	9
XII	Local Area Interest Estimates (Southeast) 4	0
XIII	Local Area Interest Estimates (Southwest) 4	1
VIX	Local Area Interest Estimates (West) 4	2
VX	Fankings of Local Area Interest Estimates 4	3
MAI	local Area Application Potential For Period	
	Spring '76 - Fall '82	. 3
XYII	Rankings of Local Area Application Potential	
	For Period Spring '76 - Fall '82 4	4
ZZIIZ	Local Area Application Potential For Spring	
	176	. 4
NIX	local Area Application Potential For Spring	
	177	5

XX	Local Area Application Potential For Spring
	178
XXI	Local Area Application Potential For Spring
	179
IIXX	Local Area Application Potential For Spring
	180
XXIII	Local Area Application Potential For Spring
	181
VXI V	Local Area Application Potential For Spring
	182
v xx	Eankings of Local Area Application Potential
	(Army)
IVXX	Pankings of Local Area Application Potential
	(Navy)
XXVII	Pankings of Local Area Application Potential
	(Air Force)
IIIVXX	Rankings of Local Area Application Potential
	(Marine Corps)
XXIX	Earkings of Local Area Application Potential
	(Military Service)
XXX	Final Application Model (Army)
IXXX	Final Application Model (Navy)
YXXII	Final Application Model (Air Force) 53
YXXIII	Final Application Model (Marine Corps)53
XXXIV	Final Application Model (Military Service) 54
XXXV	Application Model Results
IVXXX	Final Positive Propensity Model (Army) 57
YXXVII	Final Positive Propensity Model (Navy) 57
IIIVXXX	Final Positive Propensity Model (Air Force) 58
XXXXX	
	Corps)
TL.	Final Positive Propensity Model (Military
	Service)

KLI	Fositive	Propensity	Model	Results	(Nideast) .	•	•	5 9
XVII	Positive	Propensity	Model	Results	(Northeast)	•	•	60
KLIII	Positive	Propensity	Model	Results	(Northwest)	•	•	60
XLIV	Positi v e	Propensity	Model	Results	(Southeast)	•		61
ΧΓΔ	Positive	Propensity	Model	Results	(South west			
	and West)							61

LIST OF FIGURES

1.1 Composite Measures for Intent	1.1	Composite	Measures	for	Intent							•					1	9
-----------------------------------	-----	-----------	----------	-----	--------	--	--	--	--	--	--	---	--	--	--	--	---	---

I. INTRODUCTION AND LITERATURE REVIEW

A. PROBLEM AND BACKGROUND

The report of the President's Commission on an All-Volunteer Armed Force (1970) foresaw the inevitable need for improved recruiting efforts under the volunteer era. Due to the current commitment to an all recruited force and the projected substantial decline in the U.S. population of young men [Pef. 1], the Assistant Secretary of Defense for Manyower, Installations, and Logistics (OASD,MIEL) has placed increased emphasis on identifying and examining the availability of high quality enlistees [Ref. 2]. A high quality enlistee is defined as a high school diploma graduate in Armed Forces Qualification Test (AFQI) category 1-3A.

Considerable research has been undertaken regarding the availability of manpower for military enlistment. However, little of this research has focused primarily on the impact of intentions upon the subsequent enlistment behavior of Individuals. Some studies, however, have viewed intent as one of many independent variables that influence accession behavior.

Table I presents a summary of prominent econometric models developed for studying enlistment supply (Borack '84). Among these models only Hanssens and Levien (1983), Morey (1980), and Siegel and Borack (1981) used propensity to join the military service as a separate independent variable [Ref. 3].

Hanssens and Levien found, at the recruiting district level, differences in youth attitudes toward the Navy, degree of urbanization, and the proportion of high school service was also obtained for each respondent. The results indicate that a "definitely not" response depicts a lower application rate than a "definite" response within each service and for the military service in general .i.e., only a percent of those individuals who gave a "definitely not" reply as their intent to join the army actually applied for army service while the application rate for the "definite" group was 23 percent. These results also indicate that although the respondents had a higher interest in the Air Force, the Army and Navy attracted more applicants.

TABLE VI
Application Rates by Survey Enlistment Intention

Enlistment Intent	% Army (N)	я Navy (N)	% Air Force (N)	% Marine Corps (N)	Military Service (N)
Definite	23 (6 97)	19 (721)	12 (895)	10 (538)	47 (1476)
Prolably	14 (5 256)	(5769)	(6417)	(4295)	(9524)
Probably not	(15572)	(15622)	(15 ³ 89)	(15307)	14 (136 91)
Definitely not	(16921)	(16287)	(15228)	(18308)	(13478)
Dor't Know	(729)	(7 ⁶ 6)	(846)	(727)	21 (1006)

Although the relationship between expressed intentions and application rates, as shown in Table VI, are not as strong as those found by Chow and Polich, intentions are clearly related to subsequent behavior. An examination of this relationship at local area levels is conducted in the following chapter.

TABLE IV
Data Sets

oi.
Observations
79 572
79,572 79,572
134125
57 350
39,175

test were less likely to be high school graduates (53 percent versus 61 percent) and were more likely to be black (19 verses 12 percent).

TABLE V

Background Characteristics for All Respondents and Respondents Who Took Written Test

Characteristics	All respondents (percent)	Respondents taking test (percent)
Age 16-17 18-19 20-21	46 34 20	53 32 15
High school graduate Yes No	6 1 39	53 47
Race Black Other	12 88	19 81

Note: Characteristics at time of survey. High school seniors were included as graduates. Total N = 39,175, with 7216 taking test.

A closer look at the intention data as it relates to applying for military service is given in Table VI.

National application rates are matched with intentions expressed in the survey. The intention measure used was the respondents stated likelihood of serving in the military in the next few years. The intent to serve in a specific

Another data file referred to as the FIPSCODE² file was also obtained from the Defense Manpower Data Center (DMDC). This file identifies recruiting district boundaries as they relate to state and county lines. The FIPSCODE file was merged with the survey data so that survey results and applications for military service could be identified by recruiting district. For the purposes of this study, the recruiting districts were grouped into geographical recruiting regions. Since the exact regional boundaries of each service are somewhat different, caution must be exercised in interpreting this data.

Five data sets were created for the conduct of the analysis and are shown at Table IV. Data set "Surd" contained all survey results while the "Exam" data set identified those survey respondents who had applied for military service by March '84. The "Fipsrd" data set matched recruiting district lines with state and county boundaries. "Surfips" and "Surexfip" were created from combinations of the previously mentioned data sets. Data set "Surexfip" contained only those observations for which an application for military service was initiated and a social service number was given during the survey. The latter two sets exclude females and the fall '83 wave.

Table V presents a summary of the characteristics of (1) the subset of respondents who took the written test at the Military Examination Processing Commands (MEFCOMS) and (2) the characteristics of the sample as a whole. Respondents who went on to take the written test tended to be younger than the sample as a whole. Also, individuals who took the

²A fipscode is a federal state or county code obtained from a zipcode based translation file.

The Navy and Marine Corps Recruiting Commands divide the nation into six distinct recruiting regions (mideast, northeast, northwest, southeast, southwest, west) while the Army and Air Force use five regional classifications (northeast, northwest, southwest, west).

II. DESCRIPTION OF DATA FILE

To examine the use of intention data to estimate market potential, data from the Youth Attitude Tracking Study (YATS) were used. The YATS, initiated in the Fall of 1975, is a cross-sectional tracking of 16 to 21 year-olds' attitudes, perceptions, and behavior with respect to future service in the military. The study explores such topics as enlistment propensity, reasons for not considering active duty service, contact with military recruiters and other potential influencers, generally desired job characteristics, recall of recruitment advertising, awareness of starting salary and subjective effects of proposed financial incentives, and attitudes toward draft registration. The data were collected via 30-minute telephone interviews [Ref. 16].

To conduct this study, data were extracted from a Defense Manpower Data Center YATS Cohort Match File. This file contained 13 semi annual survey waves of the YATS, administered to 16 to 21 year old males between Spring 1976 and Fall 1983 (N = 79,572). Female samples were included in the Fall 1980-1983 waves but were excluded from the analysis in this study. The match file also included extracts from the Military Enlistment Processing Commands (MEPCOMS) records to determine the actual application and enlistment decisions after the survey. The follow-up period extended through March 1984, providing approximately an eight year follow-up for the earliest wave (Spring 1976) and about 3-6 months follow-up for the most recent wave (Fall 1983). The Fall '83 wave was not analyzed.

¹ Beginning in 1981, waves were conducted on an annual basis.

B. OBJECTIVE

Therefore, it is the objective of this study to determine local area estimates of market potential using intention data. For purposes of this study, (1) a "local area" is equivalent to a military service recruiting region and (2) application levels rather than accession levels are used to estimate enlistment market potential. The local area estimates of application potential will be determined for the armed services overall as well as individual services (Army, Air Force, Marine Corps, and Navy). Appendix A provides a list of states within the six regions examined in this study.

This thesis is organized as follows; Chapter II describes the data files utilized in this effort; Chapter III presents a discussion of methodologies used to develop estimates of local area market potential; Chapter IV presents key study results along with supporting comments; Chapter V present conclusions/recommendations, and includes a discussion of the potential for use of this technique as a decision making tool.

differences in the average enlistment intention levels across regions appear to help explain differences in the enlistment rates for these regions and 4) enlistment intention information may have possible applications in helping to target recruiting efforts or allocate resources [Ref. 13: pp. 40-41].

In the past, the geographical allocation of recruiters was based upon estimates of qualified military available (QMA) in an area [Ref. 14]. The rational for using QMA data to allocate recruiters is that it provides a measure of market size. Market size, however, is not equivalent to and it is market potential rather than market potential, size which is of importance in maximizing recruiter efficiency [Ref. 15: p. 650]. Market potential is in part related to the number of individuals qualified for enlistment, lut it is also determined by the propensity of these individuals to enlist in the armed forces. Efficient allocation of recruiters require that they be redistributed from areas where the cost of recruitment is high to areas where the cost of recruitment is low so that the marginal cost of recruitment will be essentially the same in all areas.

Since each service utilizes different recruiting area boundaries, the geographic marketplaces of the QMA population for the services are distinct. Therefore, it follows that the most productive placement of recruiters for each service is somewhat dependent upon the defined location of each marketplace. Orvis' findings suggest that the probability of enlisting a desirable recruit is a function of the proportion of individuals exhibiting a positive enlistment intent within that marketplace.

- What do you think you might be doing (in the next few years)?
 How likely is it that you will be serving in the military (in the next few years)?

Unaided mention and definite intention Unaided mention and probable intention Positive propensity, no unaided mention Negative propensity

Figure 1.1 Composite Heasures for Intent.

military service while an applicant has only taken written exam to determined if mental standards are met. shown in Table II, there was a strong relationship between intention level and enlistment actions.

TABLE III Enlistment Rates for Composite Intention Measure

Composite Enlistment Intertion	(%) Enlisting by December 1981	(%) Application by December 1981
Unaided mention and lefinite intention	49	62
Unaided mention and	32	48
Unaided mention and probable intention Positive propensity, no unaided intention	15	25
Negative propensity	5	10

Among Orvis findings were 1) intention information produced better predictions of application and enlistment among YATS respondents than were letermined on the basis of demographic data alone, 2) enlistment intention measures are valid for both high and low quality respondents, once qualification or eligibility to enlist is controlled for, 3)

The generic future plans question asked the respondent about plans for the next few years. If the response was to "join the military", the individual was considered to have an unaided mention of plans for military service. The strength of intention question asked the respondent the likekihood of service in the military in the next few years. The respondents' potential replies consisted of "definitely", "probably", "probably not", or "definitely not", or in the instance of indecision, "don't know".

In combining the responses to these questions, developed a composite measure with four categories (see Individuals in the first or most positive figure 1.1). category were those with an unailed mention and definite these persons gave the reply "join the That is, militar," when asked about future plans, and stated a definite intent to join when asked specifically about the strength of their intention to serve. Persons in the second category were individuals with an unaided mention and a "probably" response when asked about strength of intent to serve. The third category consisted of individuals with a " definite " or " probably " response to the strength of intent question, but who did not have an unaided mention of plans for military service. Finally, individuals in the fourth category are those with a negative enlistment propen-These individuals indicated they would " probably not " or "definitely not " serve in the military. This category also includes the "don't know " group. [Ref. 12: p. 8]

Crvis tracked the respondents to determine their actual enlistment decisions. His data base consisted of the first live waves of the YATS survey, covering Spring '76 through Spring '78, with the followup conducted through the end of December 1981. Table III compares enlistment and application behavior for the different intention categories. An enlistee is one who has signed a contract to perform

Moreover, the degree of certainty with which the intention is expressed appears to make a considerable difference. The lower panel of Table II shows nine probability categories that were given to respondents in a second question about reenlistment intent. They were asked to select which probability level best approximated their predictions. results show a close match between intentions and outcomes. For example, among respondents who said that their chances of reenlisting were 0.10 or less, only 5.1 percent did reenlist; and among those who said their probabilities were 0.90 or greater, 89 percent reenlisted. Chow and Polich concluded that for all levels of intention probability, the actual reenlistment rate is close enough to the intention level to be valuable for aggregate prediction. This means analysts may use survey reported intentions with reasonable confidence that the intentions are valid indicators of both relative and absolute probabilities of later tehavior [Ref. 9: p. 10-11]

This study will examine the usefulness of enlistment intention information for the determination of local area enlistment market potential. Current estimates of local area enlistment market potential rely principally on historical accession levels. This effort will yield an additional device for targeting recruiting efforts which is relatively independent of past accessions. It will build upon a foundation developed by Orvis (1983) which analyzed enlistment intentions and subsequent follow on actions to determine the ability of enlistment survey data to predict subsequent application for military service. Orvis examined 12 waves (Spring '76 - Fall '82) of the Youth Attitude Tracking Survey (YATS) [Ref. 10] and found that of the many intention measures in the survey, a composite measure consisting of the responses to a generic future plans question and the strength of intention to enlist served as a good predictor of the enlistment decision. [Ref. 11: p. 7]

personnel [Ref. 7]. That research found a reasonably good match between survey intentions and later behavior. A later study by Chow and Polich (1980) confirmed these findings and extended them to all services and explored alternative methods for quantifying the probabilities attached to intentions expressed in surveys. Table II presents Chow and Polich findings which matched reenlistment rates with expressed intentions. Respondents were asked to rate verbally their probability of reenlisting. The results indicate that a "no" accurately foreshadows a very low actual probability (4.7%). Of those who gave a definite 86.2 percent actually reenlisted during the next year. In general, intentions were strong predictors of actual behavior [Ref. 8].

TABLE II
Reenlistment Rates by Survey Reenlistment Intention

Reenlistment	Reenlistment Rate				
Intention	Army	<u>na⊽y</u>	Force	Total	- (N)
Vertal category yes indecided, but probably yes undecided, but probably no no Probabability Category .90-1.00 .30 .70 .60 .30 .30 .30 .30 .30 .30 .30	. 816 . 606	.936 .670	.853 .597	. 862 . 620	{497} {377}
	.271	.224	.160	. 216	(519)
	.062	.068	.028	.047	(2614)
	.844 .8517 .55223 .4436 .2064	.959 .7773 .440 .615 .330 .152	.876 .8741 .6302 .3502 .032	. 889 . 8667 . 567 . 578 . 3726 . 140 . 051	(36.8) (12.8) (7.8) (10.4) (10.5) (13.7) (34.2) (2.56.2)

Source: W.K. Chow and J.M. Polich, "Models of the First Term Reenlistment Decision", p. 11.

Note: Peenlistment rates are actual voluntary reenlistments measure! one year after the survey (March 1977).

Table I
Summary of Econometric Models (cont'd.)

		Derendent	Explanatory
Author Se	ervice	Variables	Variables
Falssels, & Levien (1983)	N	Leads, delayed en- try pool (DEPS), direct shipment contracts/17-21 male population	(Civilian earnings, UNR, % black, GI bill, % urban, % HS seniors, YATS propensity, recruiters, recruiting \$, direct shipment goal, DEP (-1)/17-21 male population
Huck, 8 Allen (1978)	D	Total HSDG I-IIIA, white HSDG I-IIIA, nonwhite HSDG I-IIIA, nonwhite HSDG I-IIIA contracts	Civilian mgf pay, UNR, recruiters, OMAs (17-21 male HSDG I-IIIA, not in college)
Jehr, & Shughart (1376)	N	(Total contracts, HSDG I-IIIA contracts)/17-21 male population	UNR, per capita income, % black, % urban, median years of education, % mfg workers, % net migration (1960-70), recruiters, male enlistment quota
(1980)	N	Total HSDG, HSDG I-IIIA contracts, leads	RMC/civilian pay, UNR, youth UNR % urban, DEP, YATS propensity, recruit- ers, minority and overall recruiting \$, advertising \$, HS seniors, % black
Morey, & rccann (1980)	N	(Total contracts, H3DG contracts, leads)/labor force	(Unemployed population, leads, advertising \$, recruiters, HS seniors, dependent variable (-1))/
Sieyal, & Borack (1981)	N	Total HSDG con- tracts/HSDG Male population	Civilian/basic military pay, (UNR recruiters (weight-el), HSDG accession yoal)/HSDG male population, YATS employment prospects, YATS propensity
Van Doren (1981)		(Total HSDG, HGSD I-II con- tracts)/17-21 male population	16-year-old wale earnings/RMC, UNR, 17-21 male population, recruiters/ 17-21 male population

Note: D=ail services; A=Army; N=Navy; MC=Marine Corps; AF=Air Force.

Table I Summary of Econometric Models (cont'd.)

~		
Author Service		Explanatory Variables
Fernaniez D (1979)	(Total HSDG, HS- DG I-II, HSDG IIIA HSDG IIIB con- racts)/17-21 male population	RMC/civilian earn- ings, lagged youth UNR, recruiters, minimum wage
Goldberg, D	Total ESDG, HSDG I-IIIA, HSDG I-II contracts	REC/civilian pay, UNR, (youth job program \$, coun- tercyclical job program \$, blacks) /17-21 male popu- lation, total 17-21 male population, Navy, Army, USAF, USMC recruiters
Goldberg, D & Greenston (1933)	HSDG I-IIIA con- tracts, HSDG IIIB contracts	RMC/civilian ear- nings, change in UNR, avg UNR, 17- 21 male population, % black males, % ur- ban population of 17-21 males, Navy, Army, USAF, USMC recruiters
Greenston, N 8 Toikka (1978)	HSDG I-II, HSDG III, HSDG IV, NHSDG I-II, NHSDG III, NHSDG IV contracts	Male youth UNR (-2), military pay (-2), real 18-21 male civilian pay (-1), 17-21 male population, suota/total contracts
Grissmer D (1977)	(HSDG I-II, HSDG III, NHSDG I-III, total I-III, black HSDG I-III, nonblack HSDG I-III, nonblack HSDG I-III contracts)/17-21 male population	Mil/civilian pay, youth UNR
Grissmer, Det.al (1974)	(Total age 17-18, total age 19-21, AFCT I-II, AFQT I-III, total HSDG, total NHSDG, black HSDG, black NHSDG contracts)/QMAs	MIL/civilian wage, youth UNR, recruiters/OMAs, male HSDG5/male college enrollments, military residents/population, bonds advertising \$

TABLE I
Summary of Econometric Models Developed for Studying
NPS Hale Enlistments

Author	Service	Dependent Variables	Explanatory Variables
Amey et a1. (1976)	A, N	(HSDG I-II, HSDG III, total I-III, NHSDG I-III cou-tracts)/17-21 male QMAs	RMC/civilian income for 17-21 males, youth UNR, advertising \$, recruiters/QNAs, \$ black 2MAs
ish, al (1983)	D	(Total contracts, total accessions, white accessions, nonwhite accessions)/18-19 year-old male population	Civ/mil pay (-1), youth unemploy-ment rate (UNR), induction probability
5rown (1933)	A	(Total contracts, AFOT I-IIIA, 18-20 porulation, high-school diploma graduates (HSDG) contracts, HSDG I-IIIA)/HS gradu-ates	RMC, VEAP/RMC, civilian wage, UNR, UNR-squared, (recruiters, national/local advertising)/ 18-20 population
Cotterman (1983)	n D	HSDG I-IIIA con- tracts/17-21 male population	RMC/civilian earn- in,s, state UNR-US UNE deviation, re- cruiters/17-21 male population
Cowin, et ai (1980)	N	(AFCT I-IIIA, AFQT IIIB-IVA, HSDG, non-HSDG contracts 1/17-21 male population, females, nonwhite school-eligible, nonwhite not school-eligible contracts	UNR, UNR (-6mos), % employed, civi- liar wajw, expect- ed civilian wage, change in civilian wage, recruiters/ 17-21 male popu- lation, % mili- tary population
Dale, & Gilroy (1933))	(Total HSDG con- tracts, white & black HSDG con- tracts)/16-19 male population	RMC/civilian pay (+4), JNR, UNR (- 2) (all for 16-19 males), JI bill/ CPI, VEAP, bonus
Saving (1982)	, AF	(AFOT I-II con- tracts, AFOT III- VI contracts)/16- 19 male population	Mil/civilian wage, employment rate, USAF fecruiters/DoD recruiters, induct- ions/16-19 male pop- ulation
Ponelai. (1377)	N	Age 17-21 AFCT I- II accessions	UNR, % urban QMA, % rural QMA, % black QMA, recruiters (weighted)

seniors and blacks in the target market were primarily responsible for the variability in recruiting performance across Navy recruiting districts (NRD's). The significance of the attitudinal variable, projensity toward the military and toward the Navy, highlights the importance of institutional image to recruiting success. Military propensity was shown to be a strong and stable predictor of potential applicants. Navy propensity was most strongly related to direct shipment (DSHIP) contracts as opposed to delayed entry program (DEP) contracts. These findings suggest that the Navy's efforts to improve its' image as a potential employer among young males should have a beneficial effect on its' recruiting performance in the long run. [Ref. 4]

Morey (1980) used the propensity or perception of military (based on response to a survey administered twice a year) by year by district in his accession supply model [Ref. 5]. In Seyal and Borack's model, the enlistment interest variable served as a proxy for omitted variables and regional "taste" differences. The interest variable was defined as the percentage of ASVAB examinees who indicated an interest in a military career. This variable was significalt in regressions using 1978 and 1979 accession data. The effects of the enlistment variable was comparable to those found by Hanssens and Levien. Segal and Borack also found that with the exception of the interest variable, the estimated effects of the explanatory variables declined between 1977 and 1979. The results of this model further indicate that the quantitative relationships between enlistment behavior variables and actual enlistment are relatively stable. [Ref. 6]

Another method used to investigate the "supply" issue is via surveys of interest/intentions to enlist or reenlist. An appraisal of how accurate intentions are as predictors of future behavior was given by a RAND study of Air Force

III. METHODOLOGY

This study proposes that local area market potential can be determined in a non-traditional way by applying estimates of relative intent to join the military to the estimated magnitude of qualified manpower available (QMA) in that area. This process is expressed in Eq. (1);

(1) $MP_{\hat{\lambda}} = QMA_{\hat{\lambda}} \times R_{\hat{\lambda}} \mid Q$

where MP; = market potential in area j

QMA; = estimated number of 17-21 year old non prior service males who are both mentally and physically qualified for military service in area j

 $R_{\frac{1}{2}} \mid Q = \text{relative level of application potential of qualified individuals in area } j$

The Defense Manpower Data Center (DMDC) maintains estimates of QMA. This study focuses on establishing a means of estimating h; from survey respondents intent to join the military. No effort is made to estimate MP; for high quality individuals, —that is, those who are both HSDG and CAT I-IIIA. If this is desired, both QMA and intent must be estimated specifically for this group.

⁴For Eurther information, contact Paul Nichens, Defense Manpower Data Center Recruiting Marketing Network, Arlington, Virginia.

A. ESTIMATION ASSUMPTIONS

There were three assumptions basic to the development of the estimate R_{2} ;

- Interest is a fixed function of age and race.
- Application rates are independent of age, race, and region.
- 3. The relationship between interest and application rates is stable over time.

The first of these assumptions is reasonable given that younger respondents (16-18) are less experienced and possibly less committed (job, families, college, etc) than older respondents (19-21). The expectation of adventure could account for the higher interest among younger individuals. Results of this study show that blacks are more interested in joining the military service than nonblacks. This occurrence is possibly due to the availability of fewer alternatives existing for blacks. However, race was not considered a factor in the computation of R; due to the insufficient sample sizes which resulted when this additional category was included.

The second assumption indicates that given an individual's intent to join the military, age, race and local area are not necessary to predict the likelihood of applying for service. This assumption was not entirely valid as shown by the application model to be discussed later in this thesis. Nace was found to play a significant role in predicting application rates, i.e. blacks were more likely to apply that nonblacks.

The firal assumption is more difficult to justify. However, it is necessary because forecasts of market

potential are made in terms of aggregate interest and application rates. Whether interest and application rates will continue to be related as they have in the past depends upon a complex set of interacting forces which impact on interest levels and subsequent behavior.

B. ESTIMATION PROCEDURE

Felative level of application potential was estimated using the formula;

(2)
$$\tilde{E}_{j} = \sum_{k} obs_{kj} \times a_{k} / \sum_{k} Exp_{kj} \times a_{k}$$

where k_j = relative level of application potential of individuals in area j

Obs_{ij} = observed number of respondents with intent i in area j

a; = aplication rates of individuals with intent
i

That is, local area application potential was estimated as observed application potential in area j relative to the application potential expected from a similar sample drawn from the nation as a whole. Numerator and denominator values of equation (2) are given in Appendix B. The technique for estimating each variable in the formula is discussed below.

The observed intention estimates, obsi; , were obtained directly from the YATS cohort match file via crosstabulation of the variables "region" and "likelihood of joining the military". This action produced the actual interest levels of the local areas sampled (see Appendix C).

The estimate of a was also obtained via crosstabulation of variables from the cohort match file (see Appendix P). The variables used were "likelihood of joining the military" and "service of application". The "service of application" variable identifies each survey respondents subsequent behavior toward applying for military service, i.e., answers are provided to the following questions, "Did he apply?" and "Fhich service?". Estimates of a; were also generated via a regression model used to predict application rates based or the available characteristics expected to effect application (see Application Model Results, Chapter IV). The variables used in this analysis are listed in Table VII. that the values of a; does not depend solely on intent However, it is clear that intent level contributes level. most strongly to the estimation of the application rates. Thus, the estimation of application potential based upon the sum of the products of the observed proportion of respondents with each intent level and the probability of an indivilual with a stated intent level subsequently joining the military appears reasonable.

Finally, the expected intentions in area j, $\text{Exp}_{i,j}$, were computed using the formula

(3)
$$\operatorname{Exp}_{i,j} = \operatorname{N}_{k,i} \times \operatorname{P}(i_k)$$

where N_{kj} = number of respondents of age k in area j $P(i_k) = \text{national percent of individuals of age k}$ with intent level i

TABLE VII Summary of Variables (Application Models)

Variable	Description
Race (2)	A dummy variable whose value is 1 if individual is black and 0 otherwise
Age (6)	Respondents age at survey (16-21)
Region (6)	Respondents residence at survey (Northeast, Northwest, Mideast, Southwest, Fest)
Wave (12)	Period in which the survey was conducted (Spring 76 - Fall 82)
Intent Level (5)	Possible responses were definitely, probably, probably not, definitely not, and don't know and were obtained for composite and specific services.
Interaction (2)	Race and intent intent and region
Note: Region and intent	level corresponds to specific

Note: Region and intent level corresponds to specific service.
Army regions were used for overall military service model.

The estimates of N_{kl} and $F\left(i_k\right)$ were taken from the match file via crosstabulation of variables "age" and "region" and "age" and "likelihood of joining the military" respectively. Values of Exp. are given in Appendix C. Estimates of $P\left(i_k\right)$ were also estimated via a regression model based on the available characteristics expected to effect interest (see Appendix G).

Note, however, that intent is strongly related to a number of demographic factors. Table VIII presents the variables used in regression analysis to predict positive The age, race and region variables strongly propensity. effect the prediction of positive propensity. samples are not corrected for discrepancies in the demographic composition of the selected samples, comparisons of interest levels between areas may be inaccurate. example, if the sample in area A contained an inordinately large number of young individuals while area B's sample contained an unusally small number of such people, area A's estimate of the proportion of individuals with "definite" or "probable" intent might have been much higher than B's --in spite of the fact that both areas might possess equal interest levels. To correct for this possibility, the estimated application rate in each area was normalized relative to the age-specific composition of its' sample. (It is assumed that the age-specific breakdown of 16-21 year olds it most areas is essentially equal.

Regional interest estimates without the effect of application rates were obtained via formula (4);

4) $R_{ij} = Obs_{ij} / Exp_{ij}$

where Rights is the relative interest estimate in area j and values of Obsig and Expig are the same as in equation (2). Values of R were also modified to correct for discrepancies in demographic composition of the selected samples. For example, estimated interest levels in each area were normalized relative to the age-specific composition of its sample. The computation of Rights provides a measure of regional interest levels by age relative to the nation as a whole. Local area age-specific estimates of interest were

TABLE VIII

Summary of Variables (Propensity Model)

Variable	Description
Race (2)	A dummy variable whose value is 0 if individual is black and 1 otherwise
Age (6)	Respondents age at survey (16-21)
Region (6)	Respondents residence at survey (Northeast, Northwest, Mideast, Southwest, West)
₩ave (12)	Period in which the survey was conducted (Spring 76 - Fall 82)
Intent Level (5)	Possible responses were defi- nitely, probably, probably not, definitely not, and don't know and were obtained for composite and specific services.
Interaction (4)	Age and region Race and region Race and age Race and age
service.	tent level corresponds to specific were used for overall military

obtained under the assumption that there was no age-region interaction, i.e., the effect of age on intent was the same in all areas.

C. MODEL DEVELOPMENT

The conceptual framework discussed earlier lead to the formulation of statistical models⁵ to predict application rates and interest levels based on the available characteristics expected to effect applications and interest. These models were designed so that a dichotomous dependent variable Y, was related to the given vector of characteristics X by the logistic function form;

(4)
$$Y = P(X_i) + error$$

where
$$P(X_i) = 1 / (1 + EXP(-Alpha - X_i Beta)$$

Alpha = intercept parameters

Beta = vector of regression parameters

The values of the parameters were determined using conditional maximum likelihood estimators.

FA model can be constructed to establish a means for estimating the probability that a respondent is of high mental grade, i.e., Cat I-IIIA. Following Orvis' recommendations, known AFOT scores were modeled based on demographic characteristics in the survey. The variables and model results are given in Appendix H.

1. Application Model

The list of variables that were included in the initial model was presented in Table VII. The regression results for these explanatory variables are given in Appendix F. Age, region, wave and all variable interactions were deleted from the final application model due to their generally insignificant effect on predicting application probabilities.

2. Intent Model

The intent model was designed to predict the likelihood of having a positive propensity for military service. The intent responses "definitely" and "probably" were combined to form the positive propensity dependent variable. The regression results are given at Appendix G. Variable interactions and the wave main effect were not included in the final propensity model due to their weak effect on predicting propensity probabilities.

IV. RESULTS

A. LOCAL AREA INTEREST ESTIMATES

Tables TX-XIV present values of local area composite and specific military service interest estimates. These estimates reflect interest levels for the period covering Spring '76 - Fall '82. Positive propensity toward military service is inversely related to age across all services and areas. The highest positive propensity is expressed toward the Air Force across ages and areas except for the southwest and mid-ast. In these areas, the Navy is favored. The area of highest positive propensity toward military service is the southeast followed by the northwest, northeast, west and southwest. Among the specific services, the areas of highest positive propensity are as shown in Table XV.

The resemblence of the interest ranking for the Army and general military service may be partially due to the fact that Army recruiting regional boundaries were used in the computation of general military service interest estimates.

B. LOCAL AREA APPLICATION POTENTIAL ESTIMATES

Table YVI presents the estimates of regional application potential relative to the nation as a whole for the period Spring '76 - Fall '82. These results show that application potential for military service is approximately 11 percentage points higher in the southeast than the southwest. The northeast, southwest, and west were below national averages while the southeast and northwest were above. The regional relationships for Army application potential were consistent with those rates for military service. Again, this is partiallly due to the common

regional boundaries. Application rates for the Navy and Marines were below national average rates in the mideast, northwest, northeast, and the west, but exceed them in the southeast and southwest. The range of application potential among Marine and Navy regions was 16 and 10 points respectively. Finally, the Air Force exceeded national averages in the southeast and northwest and was below them in the northeast and southwest. The west region was essentially similar to the nation as a whole. The range of application potential between Air Force regions was 8 points.

Table XVII shows the regional rankings of application potential. The order of application potential for military service, Navy, Air Force and Marine Corp are consistent with the order of interest estimates. However, the position of Army regions, northeast and southwest, are interchanged when interest estimates and application potential are ranked. Although the estimates of interest in the Army in these two areas are similar, there is approximately a two point difference in application potential.

Tables XVIII-XXIV presents the estimates of regional application potential for each year beginning Fall '76 thru Fall '32. These results show that application potential was consistently higher than national averages within the southeast and northwest regions. The other regions have been consistently below national averages with the western region consistently possessing the lowest application potential.

Tables XXV-XXIX shows the regional rankings of application potential by service for each year from Fall '76 thru Fall '82. With the exception of changes in '79, '81, and '82, the regional rankings of application potential for the Arm, were fairly stable. Military service rankings were also stable. The fluctuations among the other services may have been influenced by local recruiting efforts to improve past performances. The southeast was consistently the area of highest estimated application potential.

TABLE II

Local Area Interest Estimates
(Mideast)

Ran	Service		Level	of Intere	st	
Age	Set Aice	Def (%)	Prob (%)	Probn (%)	Defn (%)	DK (%)
16	A N AF MC MS	2.3 2.0	17.7 13.6	42.4 42.6	34.1 39.1	3. 2 2. 7
17	A H AF MC MS	1.5	15.7 11.8	42.4 42.0	39.0 43.4	2.1 1.8
18	A N AF MC MS	0.8 1.0	12.8 8.8	39.3 38.0	44.8 50.4	2. 1
19	A N AF MC MS	0.8	9.8 6.9	38.2 35.9	48.7 54.4	2.1
20	A N A F M C M S	0.8	8.9 5.3	36.2 33.9	51.7 57.4	2. 1 1. 8
21	A N AF MC MS	0.8 1.0	7. 9 5.8	34.1 32.6	55.6 58.8	2.1 1.8
Tota1	A N AF MC MS	1.3 1.2	13.4 9.9	39.8 38.9	43. 1 48. 0	2 <u>.</u> 4 2 <u>.</u> 1

Note: Def=definitely; Prob= robably; Probn=probably not; Defu=definitely not; DK=don't know; A=Army; N=Navy; AF=Air Force; MC=Marine Corps; MS=Military Service; The Army and Air Force do not have a distinct mideast recruiting region.

TABLE X

Local Area Interest Estimates
(Northeast)

	Service		Leve	el of Inte	rest	
Age	261 4106	Def (%)	Frob (%)	Probn (%)	Defn (%)	DK (%)
16	A N AF MC MS	1.7 3.0 2.6 2.1 5.2	14.8 15.9 17.3 12.4 29.9	39.0 36.8 38.1 36.8 3 1. 5	41.1 39.1 38.8 45.6 30.1	3. 3 3. 1 3. 2 3. 1 3. 4
17	A N AF MC MS	1.7 2.5 1.1 5.2	12.9 14.2 15.2 10.7 25.9	37.9 36.8 36.5 36.0 32.3	45.3 44.6 50.2 33.3	2. 2 2. 1 3. 2 2. 4
18	A N AF MC MS	0.9 1.0 1.7 1.0 3.1	10.0 11.5 11.8 7.9 18.8	34.7 34.1 35.3 31.9 31.5	52. 4 51. 4 49. 2 57. 2 43. 4	2.2 2.1 2.1 2.0 3.3
19	A N AF MS	0.8 1.0 0.8 1.0 2.1	8.1 8.2 6.0 15.2	32.6 33.2 34.3 29.9 31.1	56.3 55.6 61.1 49.4	2. 2 2. 1 2. 1 2. 0 2. 2
20	A N AF MC MS	0.8 1.0 0.8 1.0	7.1 8.2 8.2 5.1 13.1	31.2 31.4 31.9 28.0 29.7	58.7 59.2 57.1 63.9 54.0	2. 1 2. 1 2. 0 2. 2
21	A N A F MC MS	0.8 1.0 0.8 1.0	6.2 7.1 7.3 5.1 11.3	29.3 29.6 29.8 28.9	61.6 63.7 60.0 65.2 56.6	2. 1 2. 1 2. 0 2. 0 2. 2
Total	A N AF MC MS	1.3 1.8 1.8 1.3	11.0 12.2 12.9 8.9 21.6	35.4 34.6 35.3 33.0 31.2	49.9 47.4 54.5 40.7	2.5 2.6 2.6 2.3

Note: Def=definitely; Prob=probably; Probn=probably not; Pefn=definitely not; DK=don't know; A=Army; N=Navy; AF=Air Force; MC=Marine Corps; MS=Military Service;

TABLE XI
Local Area Interest Estimates
(Northwest)

	Soru co		Level	of Intere	st	
Aye	Service	Def (%)	Prob	Probn (%)	Defn (%)	DK (%)
16	A N AF MC MS	2.2 1.9 2.9 1.5 4.5	18.7 15.5 21.9 12.5 33.8	42.6 43.0 42.7 43.2 34.5	34.2 35.5 30.0 40.3 24.1	2.5 2.6 2.5 2.5 3.1
17	A N AF MC MS	2.2 1.3 2.9 0.7 4.5	16.4 13.8 19.6 10.8 29.6	41.8 43.0 41.5 42.3 35.7	38.0 40.5 33.5 44.5 27.0	1.6 1.8 2.5 1.7 3.1
18	A N A F M C M S	1.1 0.6 2.0 0.7 2.8	13.1 11.2 15.6 8.1 22.1	39.2 39.8 41.2 38.1 35.9	45.1 46.6 39.6 51.4 36.2	1.7 1.8 1.7 1.7 3.1
19	A N A M C M S	1.1 0.6 1.0 0.7	10.8 8.6 12.4 6.3 18.2	37.3 38.8 40.8 35.9 35.9	49.1 50.7 44.0 55.4 41.9	1.7 1.8 1.7 1.7 2.1
20	A N AF MC MS	1.1 0.6 1.0 0.7	9.5 7.8 11.2 5.4 15.8	36.1 36.7 38.5 33.9 34.7	51.7 53.7 47.6 58.4 46.4	1.7 1.8 1.7 1.7 2.1
21	A N A F MC M S	1.1 3.6 1.0 0.7	8.4 6.9 10.2 5.3 13.8	34.2 34.6 36.5 32.5 34.2	54.7 57.8 50.6 59.8 48.9	1.7 1.8 1.7 1.7 2.2
motal	A N AF MC MS	1.6 1.1 2.1 0.9 3.2	14.2 11.8 16.8 9.0 25.0	39.7 40.4 40.9 39.1 35.2	42.7 44.8 38.0 49.1 33.8	1.9 2.0 2.1 1.9 2.8

Note: Def-definitely; Prob-probably; Probn-probably not; Defn-definitely not; DK-don't know; A-Army; N-Navy; AF-Air Force; MC-Marine Corps; MS-Military Service. Local area interest estimates are relative to national interest level.

TABLE XXXII

Final Application Model
(Air Force)

Variable	Coefficient	Standard Error	Chi Square
Intercept	-2.0530	0.104	368.82
Blacks	0.3041	0.072	17.69
Probably	-0.5458	0.113	23.40
Probably Not	-1.3997	0.113	154.70
Definitely Not	-1.6617	0.115	207.77
Don't Know	-1.2066	0.205	34.66

Note: Model Chi-Square = 507.20 with 5 d.f. (5% level)

* These variables were found to be insignificant at
the 5% significance level.

TABLE XXXIII

Final Application Model
(Marine Corps)

Variable	Coefficient	Standard Error	Chi Square
Intercept	-2.3713	0.151	247.45
Blacks	0.4303	0.103	17.60
Probably	-0.9323	0.166	31.45
Protably Not	-1.9618	0.164	143.95
Definitely Not	-2.1449	0.163	172.69
Jon't Know	-1.8836	0.338	31.14

Note: Model Chi-Square = 405.33 with 5 d.f. (5% level)

* These variables were found to be insignificant at
the 5% significance level.

TABLE XXX
Final Application Model
(Army)

Variable	Coefficient	Standard Error	Chi Square
Intercept	-1.5892	0.095	2 7 9.57
Blacks	0.8936	0.051	310.63
erotably	-0.4932	0.101	23.89
Probably Not	-1.4445	0.100	207.44
Definitely Not	-1.6059	0.100	255.77
Don't Know	-1.2853	0.179	51.57

Note: Model Chi-Square = 1319.10 with 5 d.f. (5% level)

* These variables were found to be insignificant at
the 5% significance level.

TABLE XXXI
Final Application Model
(Navy)

Variable	Coefficient	Standard Error	Chi Square
Intercept	-1.4203	0.097	214.30
3lacks	-0.2134	0.080	7.10
Probably	-0.8580	J. 136	65.34
Probably Not	-1.8707	J.106	314.58
Definitely Not	-2.1144	3.107	389.03
Don't Know	-1.3178	0.183	53.76

Note: Model Chi-Square = 794.34 with 5 d.f. (5% level)

* These variables were found to be insignificant at
the 5% significance level.

a similarly less negative effect. The remaining variable coefficient estimate shows that application is not independent of race. The race coefficient estimates show that the predicted application rates for blacks are significantly different from those of nonblacks. Blacks coefficient estimates are significantly positive for military service, Army, Marine Corps, and Air Force. However, the blacks coefficient estimate for application to the Navy is significantly negative. This finding is of significant interest and merits further study. Perhaps, the images blacks have towards the Navy is reflected in this result and should therefore be a primary focus of Navy recruiting efforts.

D. APPLICATION MODEL PREDICTIONS

Table XXXV presents the projected application probabilities for the application models based on specific service interest and race. As noted, application probabilities decrease as interest decline. Estimated application rates for blacks are higher than nonblacks with the same interest except for the Navy. Although much of the blacks behavior toward rilitary service may be accounted for due to the lack of other alternatives, the reasons for the surprising Navy result is unclear.

TABLE XXIX

Rankings of Local Area Application Potential (Hilitary Service)

Region	1976	1977	1978	1979	1980	1981	1982	
Northeast	2	3	3	3	4	3	4	
Northwest	3	2	2	2	2	2	2	
Southeast	1	1	1	1	1	1	1	
Southwest	5	5	5	4	3	4	3	
West	4	4	4	5	5	5	5	

C. APPLICATION HODEL ESTIMATES

In the preliminary analysis of factors which effected applications, age and interest in general military service were examined along with race and specific service interest (see Appendix G). The effects of age were inconsistent, ranging from insignificant to slightly significant, while the effects of interest in general military service were considerably weaker then interest in the specific services. These findings were valid for all services. These findings lead to the deveplopment of the final models discussed in the next paragraph.

Tables XXX-XXXV, which present the final application model parameter estimates, show that intent has a profound impact on application for military service. The intent coefficient estimates are relative to the "definite" response and are all significant with signs in the expected direction. Negative coefficients indicate that increases in the variable tend to decrease applications. A "definitely not" and "probably not" intent has a significantly negative effect on application while "probably" and "Don't Know" had

TABLE XXVII

Rankings of Local Area Application Potential
(Air Force)

Region	1976	1977	1978	1979	1980	1981	1982	
Northeast	4	5	4	4	1	5	5	
Northwest	3	2	2	3	5	2	3	
Southeast	1	1	1	1	4	1	1	
Southwest	5	4	5	5	2	3	4	
West	2	3	3	2	3	4	2	

Note: Army and Air Force only have 5 regions.

TABLE XXVIII

Rankings of Local Area Application Potential
(Marine Corps)

Region	1976	1977	1978	1979	1980	1981	1982	
Mideast	3	4	3	4	3	4	3	
Northeast	6	2	6	3	5	5	5	
Northwest	4	6	4	5	4	3	4	
Southeast	2	1	1	1	1	2	1	
Southwest	1	3	2	2	2	1	2	
₩est	5	5	5	6	6	6	6	

TABLE XXV

Rankings of Local Area Application Potential (Army)

Region	1976	1977	1978	1979	1980	1981	1982	
Northeast	4	4	4	3	4	3	4	
Northwest	2	2	2	2	2	2	3	
Southeast	1	1	1	1	1	1	1	
Southwest	3	3	3	4	3	4	2	
West	5	5	5	5	5	5	5	

Note: Army and Air Force only have 5 regions.

TABLE XXVI

Rankings of Local Area Application Potential
(Navy)

Region	1976	1977	1978	1979	1980	1981	1982	
Mideast	4	6	4	3	5	3	1	
Northeast	5	3	5	5	3	4	6	
Northwest	6	5	6	4	6	5	5	
Southeast	1	2	1	1	1	1	2	
Southwest	3	1	2	2	2	2	3	
West	2	4	3	6	4	6	4	

TABLE XXIII

Local Area Application Potential
For Spring *81

Region	Агшу	Navy	Air Force	Marine Corps	Military Service
Mideast	N A	0.980	N A	0.977	N A
Northeast	0.976	0.978	0.939	0.954	0.995
Northwest	1.014	0.973	1.037	0.997	1.013
Southeast	1.073	1.064	1.047	1.050	1.097
Southwest	0.958	1.030	0.936	1.061	0.968
West	0.952	0.972	0.981	0.871	0.953

Note: Army and Air Force only have 5 regions. The Military Service rates were determined using Army regional boundaries. These area estimates are relative to national application rates.

TABLE XXIV

Local Area Application Potential
For Spring *82

Region	Army	Navy	Air Forse	Marine Corps	Military Service
Mideast	N A	1.074	N A	0.975	N A
Northeast	0.933	0.916	0.978	0.948	0.971
Northwest	0.992	0.939	1.324	0.966	1.001
Southeast	1.126	1.047	1.099	1.073	1.046
Southwest	1.013	1.002	1.014	1.000	0.978
West	0.907	0.966	1.028	0.915	0.955

TABLE XXI
Local Area Application Potential
For Spring '79

Pegion	Army	Navy	Air Force	Marine Corps	Military Service
Mideast	NA	0.984	N A	0.986	NA
Northeast	0.990	0.967	0.996	1.008	0.994
Northwest	1.068	0.972	1.014	0.964	1.043
Southeast	1.076	1.102	1.072	1.048	1.057
Southwest	0.975	1.054	0.932	1.027	0.953
West	0.885	0.947	1.023	0.907	0.946

Note: Army and Air Force only have 5 regions. The Military Service rates were determined using Army regional boundaries. These area estimates are relative to national application rates.

TABLE XXII

Local Area Application Potential
For Spring '80

Region	Army	Navy	Air Force	Marine Corps	Military Service
Mileast	N A	0.982	N A	0.980	NA
Northeast	0.947	1.000	1.005	0.954	0.957
Northwest	1.026	0.974	0.992	0.966	1.045
Southeast	1.795	1.058	0.995	1.087	1.065
Southwest	0.985	1.038	1.000	1.079	0.970
West	0.987	0.984	1.000	0.920	0.943

TABLE XIX

Local Area Application Potential
For Spring *77

Region	Army	Na v y	Air Force	Marine Corps	Military Service
Mideast	NA	0.970	NA	1.019	N A
Northeast	0.966	0.993	0.926	1.054	0.986
Northwest	1.037	0.976	1.032	0.960	1.013
Southeast	1.091	1.009	1.039	1.097	1.061
Southwest	0.977	1.015	0.967	1.027	0.964
Fest	0.936	0.992	1.023	0.969	0.973

Note: Army and Air Force only have 5 regions. The Military Service rates were determined using Army regional boundaries. These area estimates are relative to national application rates.

TABLE XX
Local Area Application Potential
For Spring *78

Region	Army	Navy	Air Force	Marine Corps	Military Service
Mideast	N A	0.939	NA	1.000	N A
Northeast	0.944	0.939	0.960	0.887	0.971
Northwest	1.063	0.936	1.028	0.959	1.035
Southeast	1.124	1.057	1.059	1.102	1.090
Southwest	0.964	1.053	0.958	1.056	0.951
West	0.922	0.992	1.002	0.934	0.964

TABLE XVII

Rankings of Local Area Application Potential
For Period Spring 76 - Fall '82

Region	Army	Navy	Air Force	Marine Corps	Military Service
Mideast	N A	3	NA	3	AK
Northeast	4	5	4	4	3
Northwest	2	6	2	5	2
Southeast	1	1	1	1	1
Southwest	3	2	5	2	5
West	5	4	3	6	4

Note: Army and Air Force only have 5 regions. The Military Service rates were determined using Army regional boundaries.

TABLE XVIII

Local Area Application Potential
For Spring '76

Region.	Army	Navy	Air Force	Marine Corps	Military Service
Mideast	NA	0.993	N A	0.976	N A
Northeast	0.980	0.973	0.950	0.940	1.018
Northwest	1.005	0.950	1.004	0.956	1.013
Southeast	1.047	1.049	1.076	1.030	1.032
Southwest	1.000	1.024	0.944	1.049	0.960
%est	0.946	1.048	1.039	0.941	1.006

TABLE XV
Rankings of Local Area Interest Estimates

	Army	Navy	Air Force	Marine Corps	Military Service	
Mideast		6		6		_
Northeast	3	3	4	3	3	
Northwest	2	5	2	4	2	
Southeast	1	1	1	1	1	
Southwest	4	2	5	2	5	
West	5	4	3	5	4	

Note: The Army and Air Force do not have a distinct mideast recruiting region.

TABLE XVI
Local Area Application Potential
For Period Spring '76 - Fall '82

Region	Army	Navy	Air Force	Marine Corps	Military Service
Mideast	NA	0.983	N A	0.993	NA
Northeast	0.971	J.968	J.965	0.973	0.983
Northwest	1.035	0.957	1.018	0.959	1.023
Southeast	1.081	1.056	1.045	1.087	1.074
Southwest	0.988	1.039	0.960	1.059	J.960
7est	0.941	0.981	1.004	0.930	0.965

TABLE XIV

Local Area Interest Estimates
(West)

			Level	of Intere	st	
Age	Service	Def (%)	Prob (%)	Probn (%)	Defn (%)	DK (%)
16	A N AF MC MS	1.4 3.0 2.7 1.7 5.0	12.1 17.1 21.4 10.7 27.8	41.5 39.4 39.6 40.4 34.2	41.3 35.9 33.0 43.7 29.4	3.7 3.9 3.6 3.7
17	A N A F M C M S	1.4 2.0 2.7 0.8 4.9	10.5 15.2 19.1 9.2 24.1	40.2 39.4 38.3 39.5 35.0	45.5 41.1 36.7 48.1 32.5	2.5 2.6 3.4 3.6
18	A N AF MC MS	0.7 1.0 1.8 0.8 2.9	8.1 12.3 15.0 6.8 17.4	36.6 36.5 37.8 35.1 34.1	52.2 47.2 43.1 54.9	2.4 2.6 2.4 3.5
13	A N AF MC MS	0.7 1.0 0.9 0.8 1.9	6.6 9.5 11.9 5.2 14.1	34.3 35.6 37.2 32.9 33.5	56.1 51.3 47.7 58.7 48.1	2.4 2.6 2.2 2.4
20	A N A F M C M S	0.7 1.0 0.9 0.8 1.0	5.8 8.5 10.7 4.5 12.1	32.9 33.7 34.9 30.8 32.0	58.4 54.4 51.2 61.5 52.6	2.3 2.6 2.2 2.4
21	A N AF MC MS	0.7 1.0 0.9 0.8 1.0	5.0 7.6 9.7 4.4 10.5	30.8 31.7 33.0 29.6 31.2	61.2 58.5 54.2 62.9 55.0	2.362334
Total	A N A F MC MS	1.0 1.7 2.0 1.0 3.3	8.9 13.0 16.2 7.6 19.8	37.4 37.1 37.6 36.1 33.7	50.1 45.3 41.6 52.6 39.9	2.7 2.9 2.7 2.7 3.2

Note: Def=definitely; Prob=proLably; Probn=probably not; Defn=definitely not; DK=don't know; A=Army; N=Nav; AF=Air Force; MC=Marine Corps; MS=Military Service. Local area interest estimates are relative to national in st level.

TABLE XIII

Local Area Interest Estimates
(Southwest)

Aug	Service		Leve	l of Inte	rest	
Age	261 4106	Def (%)	Prob (%)	Probn (%)	Defn (%)	DK (≸)
16	A N AF MC MS	1.9 3.3 1.9 2.2 3.9	14.5 20.8 17.4 16.9 27.8	44.3 42.3 43.5 42.3 37.0	36.7 32.3 34.5 36.5 28.3	2.6 2.3 2.7 2.1 2.9
17	A N AF MC MS	1.9 2.2 1.9 1.1 3.9	12.6 18.5 15.4 14.7 24.1	43.1 42.3 41.9 42.0 37.9	40.6 36.9 38.1 40.8 31.3	1.7 1.6 2.7 1.4 2.9
18	A N AF MC MS	1.0 1.1 1.3 1.1 2.3	9.9 15.0 12.0 11.2 17.4	40.0 39.2 40.8 38.4 36.9	47.5 42.5 44.2 47.7	1.7 1.6 1.8 1.4 2.8
19	A N AF MC MS	1.0 1.1 0.6 1.1	8.1 11.6 9.4 8.8 14.1	37.8 38.2 39.8 36.6 36.3	51. 4 46. 2 48. 4 52. 1 46. 3	1.7 1.6 1.8 1.4
20	A N AF MC MS	1.0 1.1 0.6 1.1 0.8	7.1 10.4 8.5 7.5 12.1	36.4 36.1 37.2 34.7 34.7	53.8 48.9 51.9 55.1	1.7 1.6 1.8 1.5
21	A N A F M C M S	1.0 1.1 0.6 1.1 0.8	6.2 9.3 7.6 7.5	34.3 34.0 35.1 33.3 33.9	56.8 52.9 56.6 53.0	1.7 1.6 1.8 1.4
Total	A N AF MC MS	1.4 1.9 1.4 1.4 2.6	10.8 15.9 12.4 19.8	40.6 39.8 40.6 39.2 36.6	45.3 40.9 42.45 438.5	1.9 1.8 2.2 1.6 2.5

Note: Def=definitely: Prob=probably: Probn=probably not;
Defu=definitely not: DK=don't know;
A=Army: N=Navy: AF=Air Force: MC=Marine Corps:
MS=Military Service. Local area interest estimates
are relative to national interest level.

TABLE XII

Local Area Interest Estimates
(Southeast)

1.00	 		Leve	of Inter	rest	
Age	Service	Def (%)	Prob (%)	Probn (%)	Defn (%)	DK (%)
16	A N AF MC MS	3.1 3.7 4.0 2.8 6.5	21.4 22.1 22.9 17.5 35.8	41.4 41.5 41.3 41.4 33.0	31.4 31.5 28.9 35.2 21.5	2.7 3.0 2.8 3.2 3.2
17	A N AF MC MS	3.2 2.5 4.0 1.4 6.6	18.9 19.7 20.1 15.3 31.6	40.9 41.5 40.2 41.5 34.4	35. 2 36. 0 32. 3 39. 6 24. 2	1. 8 2. 8 2. 2 3. 2
18	A N AF MC MS	1.6 1.2 2.8 1.4 4.1	15.3 16.0 16.4 11.7 24.1	38.9 38.5 40.3 38.0 35.4	42.3 41.4 38.6 46.7 33.2	1.9 2.0 1.9 2.2 3.3
19	A N AF MC MS	1.7 1.2 1.4 1.5 2.8	12.7 12.3 13.2 9.2 20.1	37.4 37.5 40.2 36.3 35.9	46.5 45.0 43.2 50.8 39.0	1.9 2.0 2.0 2.2 2.3
20	A N AF MC MS	1.7 1.2 1.4 1.5	11.2 11.1 12.0 7.9 17.7	36.2 35.5 38.0 34.4 35.0	49.0 47.7 46.7 53.9 43.6	1.9 2.0 2.0 2.2 2.3
21	A N AF MC MS	1.7 1.2 1.4 1.5	9.9 9.8 10.8 7.5	34.5 33.4 36.0 33.1 34.6	52. 1 51. 7 55. 4 46. 2	1.9 2.0 2.2 2.4
Total	A N AF MC MS	2.4 2.2 3.0 1.8 4.7	16.5 17.8 17.8 13.1 27.2	39.2 39.0 40.8 34.5	39.8 39.9 36.9 430.7	2. 1 2. 3 2. 4 2. 5 2. 9

Note: Def=definitely; Prob=probably; Probn=probably not; Defn=definitely not; DK=don't know; A=Army; N=Navy; AF=Air Force; MC=Marine Corps; MS=Military Service. Local area interest estimates are relative to national interest level.

TABLE XXXIV

Final Application Model
(Military Service)

				
Variable	Coefficient	Standard Error	Chi Square	_
Intercept	-0.2878	0.0535	28.90	_
Blacks	0.5771	0.0371	241.68	
Probably	-0.6375	0.0572	124.18	
Probably Not	-1.5769	0.0584	729.42	
Definitely Not	-1.8708	0.0596	985.52	
Don't Know	-1.1490	0.0944	148.18	_

Note: Model Chi-Square = 2656.11 with 5 d.f. (5% level)

* These variables were found to be insignificant at
the 5% significance level.

TABLE XXXV
Application Model Results

	Level of	Predicted .	Probabilities
Service	Interest	Black	Other
Army	Definitely Probably Don't Know Probably Not Definitely Not	.33 .23 .12 .11	.17 .11 .05 .05
Na v y	Definitely Probably Don't Know Probably Not Definitely Not	.16 .28 .05 .03	.19 .09 .06 .04 .03
Air Force	Definitely Probably Don't Know Probably Not Definitely Not	. 15 . 05 . 05 . 03	.11 .07 .04 .03 .02
Marine Corps	Definitely Probably Don't Know Probably Not Definitely Not	.13 .35 .322 .022	.09 .04 .01 .01
Military Service	Definitely Probably Don't Know Probably Not Definitely Not	.57 .41 .30 .22 .17	.43 .28 .19 .13 .10

E. INTENT MODEL ESTINATES

Tables XXXVI-XL indicate that positive propensity toward military service is effected by several factors. age seem to have the strongest effect on positive propensity. Blacks tend to have a higher positive interest than nontlacks while positive propensity decreases The age coefficient estimates are relative to increases. age 16 and are all significant in the expected direction. Presence of the negative coefficients indicate that an ircrease in the variable decreases positive propensity relative to a baseline category. The regional coefficient estimates are relative to the northeast region with varying effects among specific services. As expected, the southeast region has the strongest effect within each service model. The effects of the northwest region is essentially the same as the northeast in the military service and Army models and only slightly different in the Air Force model. The signs of the coefficient estimates of the southwest and west are positive for Army, Air Force and military service models but are negative in Navy and Marine Corps models.

F. INTENT MODEL PREDICTIONS

Tables WLI thru XLV presents the positive propensity model results based on race, age and local areas. As expected, positive propensity probabilities decrease with age and are higher for blacks than nonblacks across all regions and services (including Navy). Positive propensity toward military service is most similar for blacks and nonblacks relative to the Navy. The strong impact of age is evident.

TABLE XXXVI

Pinal Positive Propensity Model
(Army)

Variable	Coefficient	Standari Error	Chi Square
Intercept	-1.3089	0.0184	5035.73
Black	0.5230	0.0187	785.47
Age 17	0.1645	0.0243	45.79
Age18	-0.1220	0.0283	18.56
Age19-21	-0.4119	0.0264	278.66
Midwest	0.0483	0.2622	3.34*
Southeast	0.2442	0.0262	86.74
Southwest/West	-0.1699	0.2334	52.96

Note: Variables identified by asterisks were found to be insignificant at the 5% level.

TABLE XXXVII

Final Positive Propensity Model
(Navy)

	~		
Variable	Coefficient	Standard Error	Chi Square
Intercept	-1.3795	0.0193	5105.23
Black	0.2979	0.0192	239.45
Age17	0.1553	0.0233	44.77
Age18	-0.1140	0.0268	18.06
Aye19-21	-0.4215	0.0236	320.11
Midwest	-0.1661	0.0293	32.21
Southeast	0.1807	0.0295	37.46
Northeast	-0.0695	0.0284	5.98
Southwest/West	0.0888	0.0245	13.18

Note: Variables coefficients were estimated at the 5% significance level.

TABLE XXXVIII

Final Positive Propensity Model
(Air Force)

Variable	Coefficient	Standard Error	Chi Square
Intercept	-1.1789	0.0181	4232.64
Black	0.3765	0.0181	432.59
Age17	0.1999	0.0221	81.62
Aye 18	-0.1263	0.0257	24.22
Age 19-21	-0.4690	0.0227	427.60
Midwest	0.0465	0.0232	4.03
Southeast	0.1313	0.0233	31.73
Southwest/West	-0.0461	0.0215	4.60

Note: Variables identified by asterisks were found to be insignificant at the 5% level.

TABLE XIXIX
Final Positive Propensity Model
(Marine Corps)

Variable	Coefficient	Standard Error	Chi Square
Intercept	-1.6509	0.0209	6253.43
Black	0.4197	0.9204	423.03
Age 17	0.1342	0.0264	25.77
Age18	-0.1281	0.0387	17.39
Age19-21	-0.4145	0.0269	237.17
Midwest	-0.1249	0.0330	14,32
Southeast	0.1946	0.0336	33.57
Mideast	-0.0723	0.0315	5.25
Southwest/West	0.0373	0.0269	1.92*

Note: Variables identified by asterisks were found to be insignificant at the 5% level.

TABLE XL

Final Positive Propensity Model
(Military Service)

Variable	Coefficient	Standard Error	Chi Square
Intercept	-0.5758	0.0166	1203.17
Black	0.4125	0.0167	608.56
Ag e 17	0.2742	0.0194	199.24
Age 18	-0.1678	0.0224	55.97
Aye19-21	-0.6159	0.0199	959.19
Midwest	0.0124	0.0218	0.33*
Southeast	0.1907	0.0219	76.08
Southwest/West	-0.1659	0.0185	80.27

Note: Variables identified by asterisks were found to be insignificant at the 5% level.

TABLE XLI
Positive Propensity Model Results
(Mideast)

		Predicted Probabilities					
Aye	Race	Army	Navy	Air Force	Marine Corps	Military Service	
16	Black Other	-	.32	-	. 29 . 15		
17	Black Other	-	: 27	-	· 24 · 12	Ξ	
18	Black Other	-	. 22	-	. 19 . 09	-	
19-21	Black Other	-	:17	-	: 15 : 07	-	

TABLE XLII

Positive Propensity Model Results
(Northeast)

~~~~		Predicted Probabilitie					
Age	Race	Army	Navy	Air Force	Marine Corps	Military Service	
16	Black Other	. 37 . 17	.32 .21	.37	. 30 . 16	.58 .37	
17	Black Other	· 32 · 14	:28	.32 .18	: 24 : 12	•52 •32	
18	Black Other	· 26 · 11	. 23	.26 .14	: 20 : 10	.41 .23	
19-21	Black Other	: 22 : 59	. 18 . 11	.20 .10	. 16 . 08	. 31 . 16	

TABLE XLIII

Positive Propensity Model Results
(Northwest)

~~~~~		Predicted Probabilities					<b>-</b> -
Aye	Race	Army	Navy	Air Force	Marine Corps	Military Service	
16	Black Otier	.41	.30	.41 .25	. 28	.59 .39	
17	Black Other	: 36 : 17	:25 :16	:37 :21	: 23	• 53 • 33	
18	Black Other	. 30 . 13	·20	.29 .16	.19	. 42 . 24	
19-21	Black Other	. 24 . 10	.16 .09	.23 .12	.15 .07	:32 :17	

TABLE ILIV

Positive Propensity Model Results (Southeast)

Predicted Probabilit:					ties	
Age	Race	Army	Navy	Air Force	Marine Corps	Military Service
16	Black Other	. 46 . 23	.37 .25	.43 .26	. 35 . 19	.63 .43
17	Black Other	. 19	.32 .21	.38 .23	. 29 . 15	. 58 . 37
18	Black Other	· 34 · 15	:27	.31 .18	· 24 · 12	.47 .26
19-21	Black Other	. 28 . 12	. 21 . 12	.24	.19 .09	.36 .20

Positive Propensity Model Results (Southwest and West)

		Predicted Probabilities					
Age	Race	Army	Navy	Air Force	Marine Corps	Military Ser v ice	
16	3lack	.36	.35	.39	. 31	• 55	
	Other	.16	.23	.23	. 16	• 34	
17	Black Other	.31	· 30	.34 .20	.26 .13	• 49 • 29	
18	Black	· 25	·25	.27	.21	.39	
	Other	· 11	·15	.15	.10	.21	
19-21	3lack	. 20	.20	.21	. 17	. 28	
	Other	. 38	.12	:11	. 08	. 15	

G. QUALITY HODEL ESTIMATES

Although not utilized to estimate relative market potential within this study, other researchers may wish to obtain estimates for high quality individuals only. Therefore, a model was developed to help identify respondents be 'high-quality', i.e., mental grade 1-3A. The coefficient estimates and model predictions are given in Appendix H. It can be seen that education status, race, father's education, number of math courses and grade point average all strongly effect the quality of an individual applicant. these factors are significant in the expected direction. These estimates indicate that the probability of being in mental category I-IIIA increases as education status, father's education, number of math courses, and grade point average increases. The base line responses are non-high school diploma graduates (NHSDG), less than high school, zero, northeast and west and A's and B's for education status, father's education, number of math courses, local areas, and grade point average respectively.

H. QUALITY MODEL PREDICTIONS

In Appendix H are classification tables comparing the predicted results of the quality model to the actual classification of survey respondents who took the AFQT. This model correctly classified an individual as Cat 1-3A 68.8% of the time. The success rate of classifying those survey respondents who are HSDG, NHSDG, and high school juniors (HSJF) were 67.1, 76.7 and 63.8 percent respectively.

Appendix H also shows the predicted probability of being in category 1-3A. HSDG and HSJR are considerably more likely to be in category 1-3A than NHSDG. Blacks are less likely to be in category I-IIIA than nonblacks. Note however, the racial gap narrows as the number of math

courses increases. Chances of being a Cat I-IIIA improved significantly as the number of math courses increased from 0 to 4. The increased probabilities were dramatic for blacks across all regions and education levels of the Eather. The regions for which estimated quality probabilities are highest are southwest, northeast, west, southeast and mideast.

V. CONCLUSIONS AND RECOMMENDATIONS

The goal of this study was to show that reasonable estimates of market potential can be obtained via a method relatively independent of past accessions. Emphasis was placed on the determination of estimates of local area application potential to be applied to QMA data for the specified area. Caution should be exercised in the use of this and other survey lased studies which measure intent instead of histor-The results of this study can be greatly ical actions. altered by the implementation of new policies (e.g., decrease bonuses, retirement benefits, etc.). Also, since all survey respondents were not qualified to serve in the military, the specific results are not of immediate use. Finally, surveys measure market conditions only at a specified period in time. Various factors (e.g., international, national, and/or local events) may impact survey responses. Caution not withstanding, the following conclusions and recommendations are provided:

A. CONCLUSIONS

- 1. Reasonable estimates of application potential can be determined using intention data alone. The results are consistent with those of studies using other methodologies. For example, a) blacks are more likely to apply than nonblacks, b) application potential is greater in the southeast than in other regions across all services, and c) application potential is greater in the southeast and northwest for the Army and Fir Force, while the best areas for the Navy and Marine Corps are the southeast and southwest.
- 2. Separate application potential estimates should be

determined for racial and age subgroups. Model results indicate that blacks and nonblacks behave differently toward applications for military service. Similar results were found among ages. For example, a) a black is more likely to apply for the military than a nonblack, and b) a nonblack is more likely to apply for the Navy than any other service while blacks favor the Army. This finding is of particular interest because it indicates that blacks, though highly interested in military service, find the Navy less attractive than the other major branches.

- 2. Local area application potential estimates are stable over time for general military service and for the Army. Application potential for the Navy, Air Force and Marine Corps have varied with time.
- 4. The southeast is clearly the region of hignest application rotential while the area of lowest potential is the west.

B. RECOMMENDATIONS

- 1. Future research should include a similar analysis of survey respondents who have been classified as high quality individuals. A model can be constructed to establish a means for estimating the probability that a respondent is of high mental grade, i.e., Cat 1-3A. The results of this analysis would be of immediate as current recruiting policies favor high quality recruits.
- 2. Application potential estimates should be determined for smaller areas (e.g., recruiting districts). These estimates would provide valuable information to those responsible for managing recruiting resources.

- 3. Additional work should be conducted to investigate the lagged effects of intention on applications. The presence of lagged effects indicates that intention measures may be useful in forecasting changes in enlistment rates and in assessing the effects of proposed policy changes.
- 4. To insure an efficient recruitment program is maintained, all available methods for gathering information relating to the availability of recruit supply should be utilized. For example, when survey results and econometric model results are in agreement, recruiting managers can proceed with confidence in the allocation of recruiting resources. Discrepancies between these methods should encourage further studies and/or caution in resource allocations.

APPENDIX A IDENTIFICATION OF STATES WITHIN LOCAL AREAS

Mideast

Arr.	Navy	Air Force	Marine Corps
	D.C.		D. C.
	Indi ana*		
	Kentucky*		Kentucky
	Maryland		Maryland
	Michigan	~	
	N. Carolina*		N. Carolina*
	Ohio	***	Ohio*
	Pennsylvania*		Pennsylvania*
	Virginia		Virginia
	West Virginia		West Virginia

Note: --- State or area in this row is in another region.

^{*} Part of this state is in another region.

North west

(Actual)

	Def	Prob	Probn	Defn	Dk	N
Army	170	1487	4154	4469	194	10 474
Navy	122	1304	4475	4962	218	11081
Air Force	260	2075	5053	4695	260	12343
Marine Corps	102	10 1 1	438 1	5509	213	11216
dilitary Ser v ice	335	2621	3690	3535	293	10474

North west

(Expected)

	Def	Prob	Probn	Defn	D k	N
Army	155.8	1260.2	4054.2	4783.8	235.2	10493.2
navy	191.3	1510.5	4270.8	4896.9	248.3	11118.8
Air Force	266.4	1873.9	4796.9	5111.2	307.3	12355.7
Marine	139.8	1128.6	4263.3	5469.4	251.9	11254.4
Corps						
Military	362.7	2362.0	3578.2	3886.9	279.7	10470.5
3er v ice						

Mortheast

(Actual)

	Def	Prob	Probn	Defn	Dk	N		
Army	197	1702	5485	7728	380	15492		
Мамх	208	1443	4109	5822	279	11861		
Air Force	242	1726	4738	6 36 1	353	13420		
Marine	113	770	2853	4711	197	8644		
Corps Military Ser v ice	554	3338	4833	ó305	462	15492		
Northeast								
(Expected)								
	Def	Prob	Proba	Defn	Эk	N		

	Def	Prob	Probu	Defn	D k	N
Army	231.7	1870.4	6000.3	7069.3	359.8	15521.5
начу	208.5	1631.6	4579.8	5211.1	268.1	11899.2
Air Force	291.3	2046.7	5217.4	5543.3	335.1	13433.8
Marine	109.1	880.6	3297.7	4191.0	195.6	8674.1
Corps Military Service	538.1	3507.8	5269.1	5736.3	414.1	15485.4

Mideast

(Actual)

	Def	Prob	Probn	Defn	D k	N
Army						
Navy	144	1454	4322	4673	258	10851
Air Force						
Yarine	147	1177	4650	5733	245	11952
Corps						
Military						
Ser v ice						

Mideast

	Def	Prob	Probn	Defn	Эk	N
Army						
Navy	187.2	1478.8	4132.2	4793.5	243.6	10885.3
Air Force						
<pre>marine Corps</pre>	149.1	1205.0	4547.0	5321.6	263.6	11791.3
Hilitary Ser v ice						

Na **v**y (Actual)

	' 76	•77	' 78	' 79	180	' 81	1 82
!!ideast	44.9	38.8	39.9	41.5	48.6	34.1	32.4
Northeast	51.2	41.0	44.7	43.6	50.5	38.5	35.4
Northwest	47.1	39.5	42.8	43.1	47.0	36.7	25.5
Southeast	34.3	30.1	36.8	34.9	32.6	28.1	37.2
Southwest	36.6	32.1	37.0	33.0	37.3	28.8	33.0
West	29.9	24.1	27.1	23.4	27.1	21.1	32.0

	• 76	1 77	1 78	' 79	* 80	181	182	
Mideast	42.2	40.0	42.4	42.2	49.5	34.8	30.2	
Northeast	52.7	41.2	47.6	45.0	50.5	39.3	38.6	
Northwest	49.6	40.5	45.8	44.3	48.2	37.7	27.2	
Southeast	32.7	29.9	34.8	31.6	30.8	26.4	35.5	
Southwest	35.8	31.7	35.2	31.3	35.9	28.0	32.9	
West	29.6	24.3	27.3	24.7	27.6	21.7	33.1	

Air Force
(Actual)

	176	177	' 78	' 79	' 80	' 81	' 82
Northeast	41.5	37.9	48.2	43.7	49.2	36.4	30.8
Northwest	39.5	41.9	47.6	42.5	43.8	35.7	34.7
Southeast	37.9	40.1	49.5	42.3	41.1	35.0	34.4
Southwest	32.9	31.9	39.6	33.0	41.1	31.7	21.1
Test	28.7	27.7	33.6	28.0	29.3	23.3	32.5

	• 76	•77	• 78	179	•80	181	• 82	
Northeast	43.7	41.0	50 . 2	43.9	48.9	38.7	31.5	-
northwest	39.3	40.6	46.3	41.9	44.1	34.4	33.9	
Southeast	35.2	38.6	46.8	39.5	41.3	33.5	31.3	
Sout hwest	34.8	33.0	41.3	35.4	41.1	32.1	20.8	
West	27.6	27.0	33.5	27.3	29.3	23.7	31.6	

Army
(Actual)

	176	•77	178	' 79	180	' 81	* 82
Northeast	74.5	88.1	86.4	83.0	75.5	86.9	71.3
Northwest	52.9	66.9	66.0	59.7	54.7	60.3	70.6
Southeast	50.6	66.3	65.7	56.5	51.0	57.9	74.1
Southwest	74.7	85.3	82.6	78.6	72.8	79.0	68.4
West	31.5	37.8	36.4	30.7	28.9	35.4	50.0

	• 76	•77	1 78	1 79	•80	181	• 82	
Northeast	76.1	91.2	91.5	83.8	79.8	89.1	76.4	-
northwest	52.6	64.5	62.1	55.9	53.3	59.5	71.2	
Southeast	49.3	60.8	58. 5	52.5	46.6	54.0	65.8	
Southwest	74.7	87.3	85.8	80.6	73.9	82.5	67.5	
West	33.3	40.4	39.5	34.7	32.5	37.2	55.1	

Marine Corps

(Actual)

	• 76	' 77	' 78		' 80	' 81	* 82
Mideast	15.0			22.6		19.9	12.6
Northeast	10.3	9.4	11.5	16.9	12.9	15.3	10.8
Northwest	14.4	12.3	16.7	21.1	17.8	20.5	9.5
Southeast	9.5	9.8	13.5	15.8	12.0	14.5	14.5
Southwest	14.1	12.5	18.0	20.9	17.7	19.6	16.4
West	8.0	7.2	9.6	11.1	9.4	10.1	11.8

	• 76	1 77	1 78	179	180	' 81	* 82	
Mideast	15.4	13.5	18.2	22.9	20.4	20.4	12.9	_
Northeast	11.0	8.9	13.0	16.8	13.5	16.0	11.4	
northwest	15.1	12.8	17.4	21.9	18.4	20.5	9.8	
Southeast	9.2	8.9	13.0	16.8	13.5	16.0	11.4	
Southwest	13.5	12.2	17.0	20.4	16.4	18.5	16.4	
West	8.5	7.5	10.3	12.3	10.2	11.6	12.9	

Military Service

(Actual)

	176	•77	' 78	' 79	• 80	'81 	' 82	
Northeast	232.4	225.8	260.5	257.9	244.0	243.3	198.0	
northwest								
Southeast	149.1	162.1	187.3	171.7	158.6	163.2	183.8	
Southwest	213.9	211.2	239.2	237.8	228.0	218.6	176.3	
Sest	100.2	98.2	112.0	101.7	97.9	97.0	144.0	

	• 76	-	• 78				
Northeast	228.2	229.1	268.2	259.6	254.9	244.5	203.9
northwest	157.7	162.4	182.4	173.0	170.0	163.4	190.1
Southeast	144.5	152.8	171.8	162.5	148.9	148.8	175.7
Southwest	222.9	219.1	25 1. 5	249.4	235.1	225.9	180.3
Fest	99.5	100.9	116.2	107.5	103.9	101.8	156.8

APPENDIX B

CBSERVED AND EXPECTED NUMBER OF INDIVIDUALS WHO APPLIED FOR MILITARY SERVICE

Spring '76 - Fall '82 (Actual)

			Air	Marine	Military			
				Corps	Service			
Mideast	~	485.9		169.5				
Northeast	2311.6	524.5	496.2	120.5	2752.3			
Northwest	1663.4	483.3	481.2	153.6	1934.1			
Southeast	1621.5	394.8	474.3	122.3	1895.6			
Southwest	2213.8	337.3	399.4	161.6	2527.2			
West	1009.5	312.9	340.7	92.9	1215.6			
	(Expected)							
			Air	Marine	Military			
	Army	-		Corps				
Mideast		494.4		170.7				
Northeast	2379.8	542.1	514.5	123.9	2798.8			
Northwest	1607.5	504.9	472.6	160.1	1889.9			
Southeast				442 -	4764 6			
	1500.6	374.1	453.7	112.5	1764.6			
Southwest								

West

Army	Navy	Air Force	Marine Corps
Alaska	Alaska	Alaska	Alaska
Arizona	Arizona	Arizona	Arizona
California	California	California	California
		Colorada	
Hawaii	Hawaii	Hawaii	Hawaii
Idal.o	Idaho	Idaho	Id aho
		Kansas*	
Montanna	ilontanna	Montanna	Montanna
		Nebraska*	
Nevada	Nevada	Nevada	Nevada
		New Mexico*	
		Cklahoma*	
Oreg o n	Oregon	Oregon	Or egon
		Texas	
Utah	Utah	IJtah	Utah
Washington	Washington	Washington	Washington
	Wyoming*	Wyoming	

^{*} Part of this state is in another region.

Southwest

Army	Navy	Air Force	Marine Corps
Arkansas	Arkansas	Arkansas	Arkansas
Colorada	Colorada	Colorada	Colorada
		Illinois*	
Kansas	Kansas*	Kansas*	Kansas
		Kentucky*	
louisiana	Louisiana	Louisiana	Louisiana
		Minnesota*	Minnesota*
Mississippi		Mississippi	
Missiouri*		Missiouri	Missiouri*
Nebraska*	Nebraska*	Netraska*	Nebraska
New Mexico	New Mexico	New Mexico*	New Mexico
Cklahoma	Ok la homa	Oklahoma*	Ok lahoma
		South Dakota	South Dakota
Tennessee*		Tennessee*	
Texas	Texas	Texas*	Texas
% yoming	Wyoming*		Wyoming

^{*} Part of this state is in another region.

Southeast

Ar my	Navy	Air Force	Marine Corps
Alalama	Alabama	Alabama	Alabama
Florida	Florida	Florida	Florida
Georiga	Georiga	Georiga	Georiga
		D.C.	
Indiana*		Indiana*	Indiana*
Kent uck7	Kentucky*	Kentucky*	
		Maryland	
	Mississippi		Mississippi
N. Carolina	N. Carolina*	N. Carolina	N. Carolina*
S. Carolina	S. Carolina	S. Carolina	S. Carolina
Tennessee*	Tennessee	Tennessee*	Tennessee
Virginia		Virginia	
West Virginia		West Virginia*	

^{*} Part of this state is in another region.

Northwest

Ar my	Na v y	Air Force	Marine Corps
Illinois	Illinois	Illinois*	Illinois
Indiana*		Indiana*	Indiana*
Iowa	Iowa		
	Kansas*		
Michigan		Michigan	Michigan
Minnesota		Minnesota*	Minnesota*
Missiouri*	Missiouri		Missiouri
Nebraska*	Nebraska*		
North Dakota	North Dakota	North Dakato	North Dakato
(hio		Ohio	Ohio
	~	Pennsylvania*	
South Dakota	South Dakota		
Wisconsin	Wisconsin	Wisconsin	Wisconsin

^{*} Part of this state is in another region.

Northeast

Army	Na v y	Air Force	•
Correcticut	Connecticut	Connecticut	Connecticut
Delaware	Dela ware	Lelaware	Delaware
p.c.			
Maine	Maine	Maine	Maine
Maryland	~~		
Massachusetts	Massachusetts	Massachusetts	Massachuset ts
New Hampshire	New Hampshire	New Hampshire	New Hampshire
New Jersey	New Jersey	New Jersey	New Jersey
New York	New York	New York	New York
Pennsylvania	Pennsyl v ania*	Pennsylvania*	Pennsylvania*
Rhode Island	Rhode Island	Rhode Island	Rhode Island
Vermont	Vermont	Vermont	Vermont
		West Virigina*	

^{*} Part of this state is in another region.

Southeast

(Actual)

	Def	Prob	Probn	Defn	Dk	N
Army	235	16 1 6	3831	3886	202	9770
Navy	17 9	1387	3203	3226	186	8181
Air Force	351	2104	4732	4370	285	11842
Marine Corps	141	1027	3046	3448	194	7856
Military	459	2657	3368	2999	287	9 77 0
Service						

Southeast

	Def	Prob	Probn	Defn	Dk	N
Army	146.0	1178.9	3784.1	4459.1	220.4	9788.5
Navy	144.1	1127.6	3162.1	3588.2	184.9	8207.9
Air Force	256.1	1802.7	4604.5	4394.9	295.1	11854.4
Marine	99.1	300.0	2997.7	3808.1	177.6	7883.5
Corps Military	339.0	2210.7	3336.2	3613.9	260.9	9765.7
Service	337.0		3333.2	30.043	200.5	J. 0 J

Southwest

(Actual)

	Def	Prob	Probn)efn	D k	N
VLWA	208	1574	5931	6626	281	14620
ча v ў	161	1330	3338	3406	147	8382
Air Force	148	1407	4418	4659	242	10874
Marine Corps	146	1330	4191	4857	170	10694
Military	386	2892	5343	5633	366	14620
Service						

Southwest

	Def	Prob	Probn	Defn	Dk	N
Army	216.8	1749.0	5648.3	6707.3	327.9	14649.3
Navy	145.3	1149.6	3237.0	3688.6	188.3	8409.8
Air Force	232.4	1641.4	4229.8	4520.9	269.9	10884.4
Marine	132.7	1079.4	4071.4	5205.4	239.6	10728.5
Corps						
Tilitary	500.3	3276.1	4989.5	5427.9	388.5	14583.3
Service						

West
(Actual)

	Def	Prob	Probn	Defn	Dk	N
Army	71	620	2612	3501	190	6994
Nav y	122	960	2592	3169	205	6 994
Air Force	173	1436	3334	3686	242	8871
Marine Corps	73	530	2523	3 67 3	189	6 98 8
Military Ser v ice	233	1385	2360	2793	223	6994

West

	Def	Prob	Probn	Deîn	Dk	N
Army	103.6	838.5	2703.1	3205.0	157.7	7009.9
Navy	121.3	954.6	2695.3	3086.9	157.7	7016.8
Air Force	189.8	1341.9	3445.4	3681.0	219.9	3878.0
Marine	87.6	703.9	2656.7	3406.0	157.5	7012.7
Corps						
Military	239.6	1570.7	2386.6	2607.6	186.1	6892.6
Service						

APPLICATION RATES BY INTENT AND SERVICE OVER TIME

Spring 176 - Fall 182

	%	۶	%	%	%	%
Service	Def	Prob	Probn	Defn	DK	Total
	(N)	(N)	(N)	(11)	(N)	(N)
Army	22.52	13.79	5.09	4.44	6.31	6.31
	(697)	(5256)	(15572)	(16921)	(729)	(39175)
Navy	18.72	9.01	3.53	2.78	5.93	4.35
	(721)	(5769)	(15622)	(16287)	(776)	(39175)
Air	12.29 7.32 3.16		3.16	2.46	3.90	3.80
Force	(895)	(6419)	(15789)	(15228)	(846)	(39175)
Marine	9.67	3.91	1.36	1.14	1.51	1.65
Corps	(538)	(4295)	(15307)	(18308)	(727)	(39175)
Wilitary	46.68	30.62	14.05	10.99	20.58	18.42
Service	(1476)	(9524)	(13691)	(13478)	(1006)	(39175)

Fall '76

	%	%	9	%	%	%
Ser v ice	Def	Prob	Probn	Defn	DK	Total
	(N)	(N)	(N)	(N)	(N)	(N)
Army	20.00	13.37	4.24	4.58	5.95	5.60
	(45)	(389)	(1463)	(1682)	(84)	(3663)
Navy	23.73	11.76	4.24	3.13	3.85	5.00
	(59)	(459)	(1440)	(1627)	(78)	(3663)
Mir	8.54	8.75	2.65	1.96	4.81	3.41
Force	(82)	(514)	(1435)	(1528)	(104)	(3663)
Marine	11.43	3.85	1.41	0.82	3.95	1.47
Corps	(35)	(312)	(1417)	(1823)	(104)	(3663)
Military	44.44	29.53	12.65	9.67	20.37	16.82
Service	(126)	(850)	(1265)	(1314)	(108)	(3663)

Fall '77

	*	ج,	%	35	%	**
Service	Def	Prob	ProLn	Defn	DK	Total
	(N)	(N)	(N)	(N)	(N)	(N)
Army	33.33	11.98	5.95	4.60	9.09	6.82
	(60)	(509)	(1362)	(1436)	(66)	(3433)
Navy	19.23	7.18	3.39	2.90	8.96	4.31
	(78)	(585)	(1326)	(1377)	(67)	(3433)
Air	10.53	6.27	3.38	1.83	1.32	3. 41
Force	(76)	(606)	(1360)	(1315)	(76)	(3433)
Marine	9.68	2.33	1.06	0.90	3.03	1.34
Corps	(62)	(429)	(1326)	(1550)	(66)	(3433)
Military	43.55	28.94	14.01	9.39	22.54	17.39
Service	(124)	(857)	(1199)	(1182)	(7 1)	(3433)

Fall '78

	*	%	%	X	%	%
Ser v ice	Def	Prob	Probn	Defn	DK	Total
	(N)	(N)	(K)	(N)	(N)	(N)
Army	14.75	16.48	6.05	5.10	3.13	7.10
	(61)	(449)	(1290)	(1530)	(64)	(3394)
Na v y	21.05	8.56	3.90	2.86	8.33	4.66
	(76)	(514)	(1333)	(1399)	(72)	(3394)
Air	12.94	12.94 7.96 3.6		2.85	6.67	4.36
Force	(85)	(565)	(1320)	(1334)	(90)	(3394)
Marine	2.70	5.36	1.83	1.10	1.37	1.89
Corps	(37)	(392)	(1259)	(1633)	(73)	(3394)
Military	49.62	34.92	16.61	13.24	18.89	20.80
Service	(131)	(756)	(1196)	(1231)	(90)	(3394)

Fall 179

	X %		%	%	%	%	
Service	Def	Prob	Probn	Defn	DK	Total	
	(N)	(N)	(N)	(N)	(N)	(N)	
Army	18.75	15.95	5.17	4.84	5 . 95	6.60	
	(48)	(395)	(1219)	(1404)	(84)	(3150)	
Navy	22.50	9.70	3.47	3.26	4.60	4.57	
	(40)	(464)	(1210)	(1349)	(87)	(3150)	
Air	20.24	6.71	2.92	3.38	3.96	4.19	
Force	(84)	(492)	(1199)	(1274)	(101)	(3150)	
Marine	12.82	4.39	1.67	1.48	0.00	1.97	
Corps	(39)	(342)	(1200)	(1489)	(80)	(3150)	
Military	46.73	34.34	15.59	13.53	20.20	20.19	
Service	(107)	(693)	(1142)	(1109)	(99)	(3150)	

Fall '80

	75 77		%	%	%	7.	
Service	Deī	Prob	Probe	Defn	DK	Total	
	(N)	(N)	(N)	(N)	(N)	(N)	
Army	24.56	12.82	4.92	4.36	1.85	6.03	
	(57)	(459)	(1200)	(1446)	(54)	(3186)	
Navy	18.97	8.60	4.41	3.67	7.14	4.93	
	(58)	(407)	(1247)	(1418)	(56)	(3186)	
Air	0.00	4.04	3.50	3.49	10.00	3.64	
Force	(34)	(371)	(1316)	(1405)	(60)	(3186)	
Marine	13.89	4.06	1.81	1.17	2.00	1.88	
Corps	(36)	(345)	(1216)	(1539)	(50)	(3186)	
Hilitary	49.65	28.59	15.55	10.55	23.33	18.49	
Service	(141)	(738)	(1061)	(1156)	(90)	(3186)	

Fall '81

	% %		7 . 3 .		%	%	
Ser v ice	Def	Prob	Prota	Defn	DK	Total	
	(N)	(N)	(N)	(N)	(N)	(N)	
Army	22.54	13.14	4.86	4.67	4.48	6.37	
	(71)	(449)	(1188)	(1349)	(67)	(3124)	
Na v y	10.00	7.07	3.26	2.59	6.94	3. 75	
	(50)	(467)	(1221)	(1314)	(72)	(3124)	
Air	8.24 5.76 2.73		2.73	2.09	1.56	3.20	
Force	(85)	(608)	(1171)	(1196)	(64)	(3124)	
Marine	11.54	5.41	1.52	1.04	1.47	1.92	
Corps	(52)	(370)	(1183)	(1446)	(68)	(3124)	
Military	29.73	29.15	13.43	10.61	22.92	18.28	
3er v ice	(146)	(844)	(1020)	(1018)	(96)	(3124)	

Fall '82

	×	#	%	%	%	%
Service	Def	Prob	Probn	Defn	DK	Total
	(N)	(N)	(N)	(%)	(N)	(N)
Army	21.98	13.56	5.54	2.96	2.00	6.18
	(91)	(512)	(1532)	(1421)	(50)	(3706)
Navy	11.59	8.16	2.59	1.92	5.66	3. 26
	(69)	(490)	(1584)	(1510)	(53)	(3706)
Air	8.18	5.11	2.04	1.76	1.64	2.67
Force	(110)	(666)	(1565)	(1304)	(61)	(3706)
Marine	8.77	2.97	1.22	0.79	0.00	1.32
Corps	(57)	(404)	(1556)	(1636)	(53)	(3706)
Military	38.59	22.74	11.79	9.80	13.16	15.65
Service	(184)	(1038)	(1357)	(1051)	(76)	(3706)

APPENDIX E

LOCAL AREA SAMPLE SIZE AND NATIONAL INTEREST LEVELS BY AGE

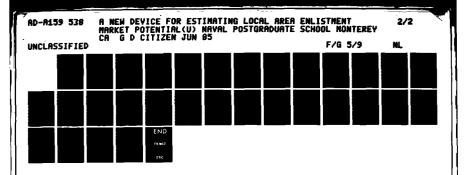
Sample Size (Army)

Region	16	17	18	19	20	21	И
Northwest	2568	2541	1911	1535	1089	830	10474
Northeast	3993	3683	2751	2113	1651	1301	15492
Sout heast	2499	2326	1727	1378	1062	775	9 77 0
Southwest	3555	3502	2551	2078	1687	1247	14620
West	1779	1562	1256	1006	769	602	6 99 4
Total	14394	13634	10196	8110	6261	4755	5 7 35 9

Sample Size (cont'd)
(Air Force)

Region	16	17	18	19	2)	21	Я
Forthwest	2999	3046	2206	1776	1313	1003	12343
Northeast	3472	3 201	2363	1817	1435	1132	13420
Southeast	3020	2808	2115	1674	1281	944	11842
Southwest	2654	2584	1895	1548	1265	931	10874
West	2249	1995	1620	1295	967	7 45	8871
Total	14394	13634	10196	8110	6261	4755	57350

Sample Size (cont'd)
(Navy)


Region	16	17	18	19	20	21	N N
#ide a st	2662	2544	1943	1578	1231	893	10 85 1
Northwest	2672	2703	1942	1560	1227	977	11081
iiort heast	3089	2813	2084	1595	1274	1006	11861
Southeast	2129	1969	1419	1135	907	€22	8 18 1
Southwest	2063	2023	1552	1236	853	6 55	8382
West	1779	1582	1256	1006	769	602	6994
Total	14394	13634	10196	8110	6 26 1	4755	57 350

(Marine Corps)

Region	16	17	18	19	20	21	N
Mideast	2957	2825	2 15 7	1710	1330	973	11952
Northwest	2762	2658	1975	1596	1250	975	11216
Fortheast	2271	20€6	1490	1164	916	737	8644
Sout heast	2052	1878	1364	1085	882	595	7858
Southwest	2574	2628	1955	1549	1115	873	10694
West	1778	1579	1255	1006	76 8	602	6 98 8
Total	14394	13634	10196	8110	6261	4755	573 5 0

National Interest Levels
(Army)

	%	Я	**	ak,	%
Age		Prob			
16	1.9	16.4			2.8
17	1.9	14.0	40.5	41.3	2.4
18	1.3	11.4	37.5	47.8	2.1
19	1.4	9.0	36.2	51.7	1.7
20	0.9	8.2	34.9	54.5	1.0
21	1.1	7.0	32.6	57.8	1.5
Total	1.5	12.2	38.4	45.7	2.2
	7.	(Air Fo %	rce)	9 7,	Я
	Def	Prob			
16	3.0		40.6		
17	2.5	17.7	40.3	36.7	2.8
18	1.7	14.2	38.7	43.2	2.2
19	1.4	11.4	38.2	47.0	2.0
20	1. 1	9.8	36.3	50.9	1.9
21	1.0	8.9	34.2	54.2	1.7
Total					

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

National Interest Levels
(Marine Corps)

	8	.	%	Х	%
Age	Def	Prob	Probn	Defn	DK
16	1.8	14.3	41.6	39.6	2.7
17	1.4	11.6	40.6	44.3	2.2
18	1.2	9.2	36.6	51.5	1.9
19	0.9	7.3	34.7	55.4	1.7
20	0.6	6.3	33.1	58.3	1.8
21	0.8	6.0	31.5	60.2	1.5
Total	1.3	10.2	37.7	48.7	2.1

(Navy)

Mje	% Def	۳ Prob	% Probn	% Jefn	% DK
16	2.6	18.0	41.1	35.4	2.7
17	1.8	15.7	40.7	39.5	2.4
18	1.4	12.7	37.9	45.9	2.2
19	1.0	10.4	36.7	50 .1	1.8
20	0.8	9.2	34.9	53.3	1.8
21	1.1	8.0	32.6	56.9	1.5
Total	1.6	13.6	38.4	44.0	2.3

National Interest Levels (Military Service)

	55	%	Ж	%	%	
Age	Def	Prob	Proba	Defn	DK	
						-
16	5.2	30.7	34.2	26.5	3.4	
17	4.7	26.6	35.2	30.4	3.1	
18	2.9	20.2	34.7	39.5	2.7	
19	1.3	16.3	34.1	45.4	2.4	
20	1.3	14.1	33.0	49.5	2.4	
21	1.3	12.3	32.0	52.3	2.1	
Ţotal	3.4	22.5	34.2	37.1	2.8	

APPENDIX F INITIAL APPLICATION MODEL ESTIMATES

Militar; Service

		Chi	
Variable	#stimate	Error	Square
Intercept	0.0057	0.1141	0.00*
Black	0.0585	0.1274	0.21*
Age 17	-0.0213	0.0381	0.31*
åge18	-0.0016	0.0415	0.00*
Age19	-0.1681	0.0466	13.00
Age20	-0.1639	0.0518	10.01
Age21	-0.2413	0.0597	16.40
Southeast	-0.1394	0.1487	0.88*
Horthwest	-0.1212	0.1639	0.55*
Southwest	-0.2562	0.1546	2.75*
West	-0.0186	0.1870	0.01*
Spring 176	-0.0264	0.0763	0.12*
Fall '76	-0.0938	0.0654	2.06*
Spring '77	-0.0614	0.0639	0.92
Spring 178	-0.0102	0.0685	0.02*
Fall '78	0.1719	0.0644	7.12

Model Estimates (cont'd)

Spring 179	0.1850	0.0643	8.15
Fall '79	0.1574	0.9657	5.57
Spring '80	0.0576	0.0650	0.78*
Fall '80	0.0065	0.0666	0.01*
Fall '81	-0.0736	0.3672	1.20*
Fall '82	-0.2342	0.3663	18.35
Probably	-0.8106	0.1133	51.20
Prolably Not	-1.7806	0.1157	236.71
Definitely Not	-2.0372	0.1165	305.35
Don't Know	-1.4500	0.1960	54.75
race*intent			
1	9.4003	0.1406	8.10
2	0.7177	0.1502	22.84
3	0.8573	0.1494	32.92
ц	0.5100	0.2530	4.06
region*intent			
1	0.1140	0.1623	0.49*
2	0.2020	0.1669	1.46*
3	0.1290	0.1712	0.57*
4	-0.0403	0.2913	0.02*
5	-0.0223	0.1771	0.02*
6	0.0136	0.1907	0.01*

Model Estimates (cont'd)

7	-0.0336	0.1839	0.03*
8	0.1727	0.2883	0.36*
9	0.2056	0.1678	1.50*
10	0.1659	0.1693	0.96*
11	0.0235	0.1724	0.02*
12	0.6723	0.2677	6.31
13	0.1196	0.2050	0.34*
14	-9.0706	0.2087	0.11*
15	0.0122	0.2103	0.00*
16	-0.1730	0.3482	0.25*

Note: * Denotes insignificance at the 5% level.

Intermediate Application Model (Army)

Variable		Standard Error	Square
		J. 104	
Blacks	0.8355	0.051	267.87
Age 19/20	0.0054	0.051	0.01*
Age21	0.0576	0.082	0.49*
Probably (MS)	-0.2491	0.086	8.43
Probably Not (NS)	-3.8405	0.094	80.39
Definitely Not (MS)	-1.0913	0.099	122.53
Don't Know (MS) -0.4282	0.152	7.99
Probably (A)	-0.3380	0.108	9.72
Probably Not (A)	-0.9660	0.111	76.16
Definitely Not (A)	-0.9534	0.112	72.46
Don't Know (A)	-0.9746	0.192	25.82

Note: Model Chi-Square = 1540.74 with 11 d.f. (5% level)

* These variables were found to be insignificant at
the 5% significance level.

		Standard Error	Square
Intercept			108.41
Blacks	-0.2833	0.081	12.38
Age19/20	-0.1328	0.062	4.61
Age21	-0.2894	0.109	7.01
Probably (MS)	-0.2913	0.101	8.40
Probably Not (MS)	-0.7739	0.110	49.78
Definitely Not (MS)	-0.7897	0.116	46.46
Don't Know (MS) -0.3995	0.177	5.08
Probably (N)	-0.6371	0.113	36.97
Probably Not (N)	-1.4531	0.117	155.35
Definitely Not (N)	-1.6243	0.121	179.15
Don't Know (N)	-1.0639	0.195	29.75

Note: Model Chi-Square = 909.05 with 11 d.f. (5% level)

* These variables were found to be insignificant at
the 5% significance level.

Intermediate Application Model
(Air Force)

		Standard Error	Square
Intercept			248.19
Blacks	0.2740	0.273	14.21
Age 19/20	-0.2063	0.067	9.62
Age21	-0.3119	J.116	7.27
Probably (MS)	-0.1432	0.115	1.56*
Probably Not (MS)	-0.3829	0.123	9.78
Pefinitely Not (MS)	-0.5952	0.130	21.01
Don't Know (MS	-0.3527	0.207	2.91*
Protatly (AF)	-0.4336	0.122	12.57
Probably Not (AF)	-1.1414	0.127	81.03
Definitely Not (AF)	-1.2581	0.132	90.43
Don't Know (AF) -0.9823	0.221	19.82

Note: Model Chi-Square = 561.95 with 11 d.f. (5% level)

* These variables were found to be insignificant at
the 5% significance level.

Intermediate Application Model (Marine Corps)

		Standard Error	Square
Intercept		0.167	143.79
Blacks	0.3496	0.103	11.47
Age19/20	-0.2728	0.103	7.07
Age21	-0.3391	0.176	3.72*
Probably (MS)	-0.4046	0.144	7.93
Probably Not (MS)	-0.9321	0.160	33.90
Definitely Not (MS)	-1.0176	0.169	36.35
Don't Know (MS	-7.6240	0.288	4.69
Probably (MC)	-0.7335	0.176	17.34
Probably Not (MC)	-1.4927	0.178	70.00
Definitely Not (MC)	-1.5670	3.181	75.31
Don't Know (MC	-1.5468	0.355	18.93

Note: Model Chi-Square = 424.18 with 11 d.f. (5% level)

* These variables were found to be insignificant at
the 5% significance level.

Intermediate Application Model (Military Service)

Variable	Coefficient	Standard Error	Chi Square
Intercept	-0.2508	0.054	21.93
Blacks	0.5975	0.038	242.09
Age 19/20	-0.1751	0.033	28.49
Age21	-0.2494	0.055	20.57
Probably	-0.6262	0.057	119.74
Probably Not	-1.5464	0.059	697.53
Definitely Not	-1.8172	0.060	914.06
Don't Know	-1.1274	0.094	142.83

Note: Molel Chi-Square = 2682.72 with 7 d.f. (5% level)

<u>APPENDIX</u> G

INITIAL POSITIVE PROPENSITY MODEL ESTIMATES

Positive Propensity Model Estimates (Military Service)

# ! - !	Taki naka	Standard	
variable	Estimate	EFFOF	Square
Intercept	-0.7856	0.0236	1108.34
Black	0.4569	0.0235	377.14
Age 17	G.4018	0.0432	86.45
%ge18	0.0873	0.0459	3.62*
age19	-0.2199	0.0522	17.73
Age20	-0.3733	0.0614	36.91
Age21	-0.4179	0.0652	41.14
Forthwest	0.0800	0.0372	4.64
Coutheast	0.2784	0.0366	57.82
Southwest	-0.2034	0.0443	21.07
Test	-0.1256	0.0693	3.28*
Spring '76	0.0812	0.0495	2.69*
Fail 176	-0.0673	0.0375	3.22*
Spring '77	-0.0589	0.0362	2.64*
Spring '78	-0.1387	0.0424	10.72
rall 178	-0.1442	0.0392	13.51

Model Estimates (cont'd)

Spring 179	-0.1062	0.3399	7.10
Fall 179	-0.1418	0.0408	12.08
Spring '80	0.1247	0.0376	11.02
Fall '80	-0.0222	0.0392	0.32*
Fall '81	0.1836	0.0387	22.53
Fall '82	0.2854	0.0355	64.77
Age*Region (2	20)		
1	0.0747	0.06€5	1.26*
2	-0.0804	0.0712	1.28*
3	0.0209	0.3800	0.07*
4	0.0836	0.0996	0.70*
5	-0.0254	0.1360	0.06*
6	-0.1300	0.0662	3.86
7	0.0581	0.0714	0.66*
8	0.1316	0.0803	2.65*
9	0.0363	0.0913	0.16*
10	-0.1417	0.1069	1.76*
11	-0.0032	0.0757	0.60*
12	0.0704	0.0877	0.64*
13	-3.0721	0.0996	0.52*
14	-0.0901	0.1205	0.56*
15	-0.0065	0.1213	0.00*

Results of Quality Model (Southwest)

(Father's education level = HSG)

			Probab	ility of	being	Cat I-I	IIA	
# of Math	Grade Point	Н:	SDG		IS DG	HS JR		
Courses	Average			Black	Other	Black	Other	
0	1	.29	. 69	-	. 52	-	.67	
	2	. 17	• 53	.09	. 35	. 16	.50	
	3	.11	. 41	-	.25	. 10	.39	
	4	-	. 29	-	. 17	-	.28	
1	1	.31	.71	.18	. 34	. 29	.6 9	
	2	.18	. 55	.10	.37	. 17	.53	
	3	.12	. 43	.06	.27	.11	.41	
	4	-	. 31	-	. 18	-	.29	
2	1	-44	. 31	-	. 67	.41	.80	
	2	.28	.68	-	.51	. 26	.66	
	3	. 19	. 57	. 10	.39	.18	.55	
	4	-	-	-	. 28	-	.42	
3	1	.55	. 87	.37	-	. 52	.86	
	2	.37	.77	.22	.61	. 35	.75	
	3	.27	.67	-	•50	-	.65	
	4	-	. 55	-	-	-	.53	
4	1	.67	.92	_	-	-	.91	
	2	.51	. 85	-	.73	-	.84	
	3	.39	. 78	-	-	-	.76	
	4	-	-	-	-	-	.66	

Results of Quality Model (Southwest)

(Father's education level less than HSG)

				_		•	Cat I-	
	Grade		5DG		H K	SDG		SJR
Courses	Point Average	Black	Other	Bla	ck	Other	Black	Other
0		.21						
	2	.12	. 42	•	06	. 26	. 11	.40
	3		. 31			. 18		.29
	4	-	. 21	•	02	. 12	.04	.20
1	1	.23	.62		_	.44	. 21	.60
	2	. 13	. 45	•	07	.28	. 12	.42
	3	.08	. 33	•	04	. 19	.08	.31
	4	-	. 23		-	. 13	-	.22
2	1	.34	. 74		-	. 57	-	.72
	2	.20	. 58	•	11	.40	. 19	.56
	3	. 14	.46	•	07	. 29	. 13	.44
	4	-	-		-	.20	-	.32
3	1	_44	.81		-	.68	. 42	.80
	2	. 28	.68	•	16	.51	.26	.66
	3	.20	. 57	•	11	.39	. 18	.55
	4	-	-		-	. 28	-	-
4	1	.58	. 88		-	-	-	.87
	2	.40	. 79		-	.64	.38	.77
	3	-	.70		-	• 53	-	.63

. 11

Results of Quality Model (Northeast and West)

(Father's education greater then HSDG)

		Probability of being Cat I-IIIA						
# of Math	Grade Point	Н:	5DG		ISDG	HSJR		
Courses	Average			Black	-			
0	1	.31	.71	-	-	_	.69	
	2	.18	• 55	. 10	. 37	. 17	•53	
	3	.12	. 43	.06	.27	. 11	.41	
	4	.08	. 32	. 04	. 18	-	-30	
1	1	. 33	. 73	-	.57	.31	.71	
	2	.20	.58	. 11	.40	. 18	.55	
	3	. 13	. 46	.07	.29	. 12	-44	
	4	-	. 34	-	. 20	-	.32	
2	1	.46	.83	-	.70	.44	.81	
	2	.30	.70	. 17	•53	. 28	-68	
	3	.21	. 59	. 11	.41	.20	.57	
	4	-	. 47	-	. 30	-	.44	
3	1	.57	.88	.39	. 78	.33	.87	
	2	.40	.78	. 24	•64	. 38	.7 7	
	3	.29	. 69	-	• 52	-	.67	
	4	-	. 58	-	-	-	-	
4	1	.70	.93	-	. 86	.68	.92	
	2	•53	. 86	-	. 75	.51	.85	
	3	.42	. 80	-	. 65	-	.78	
	4	-	-	-	-	•	-	

Note: $GPA = 1 = A \cdot s \cdot s \cdot B \cdot s \cdot GPA = 2 = B \cdot s \cdot s \cdot C \cdot s \cdot GPA = 3 = C \cdot s \cdot s \cdot GPA = 4 = D \cdot s \cdot s \cdot below;$

Results of Quality Model (Northeast and West)

(Father's education level = HSDG)

				ility of	_			
# of		н	SDG	N E	HSDG	HSJR		
Courses	ath Point Ourses Average							
0	1			.14				
	2	. 15	. 48	.38	.31	.13	.46	
	3	.10	.37	.05	. 22	.09	.35	
	ħ	-	. 26	.03	. 15	-	.24	
1	1	.27	.68	. 15	.50	. 26	.66	
	2	. 16	. 51	.08	.33	. 15	.49	
	3	.10	. 39	.05	. 24	. 10	.37	
	4	-	. 28	.03	. 16	~	.26	
2	1	.43	. 78	.24	.63	. 37	.77	
	2	. 25	. 64	- 14	.46	.23	.62	
	3	.17	.53	-	. 35	. 16	•50	
	4	-	. 40	-	. 24	-	.38	
3	1	. 50	. 85	.33	.73	. 48	.84	
	2	. 34	. 74	. 20	.57	.32	.72	
	3	.24	.63	. 13	.46	-	.61	
	4	-	-	-	-	-	.49	
4	1	. 64	. 91	-	.82	.62	.90	
	2	.47	.83	-	. 70	. 44	.81	
	3	.35	. 75	-	. 59	-	.73	
	4	-	-	-	-	-	-	

Results of Quality Model (Northeast and West)

(Father's education level less than HSG)

		Probability of being Cat I-IIIA						
	Grade Point	HSD	HSDG		SDG	HSJR		
	Average			Black				
0	1		. 55		.37		•53	
	2	. 10	. 38	.05	.23	.09	.36	
	3	.07	.28	.03	. 16	.06	.26	
	4	-	. 19	.02	. 10	.04	.17	
1	1	.20	.58	.11	.40	. 18	•55	
	2	.11	. 40	.06	. 25	. 10	.38	
	3	.07	.30	.04	. 17	.07	.28	
	4	-	. 20	.02	. 11	.04	.19	
2	1	.30	.70	.17	•53	. 28	.68	
	2	. 18	. 54	. 99	. 36	. 16	.52	
	3	.12	.42	.06	. 26	. 11	.40	
	4	-	-	. 04	. 18	-	.29	
3	1	.40	.79	-	• ó4	. 38	.77	
	2	. 25	.65	. 14	- 47	.23	.62	
	3	.17	. 53	-	. 35	. 16	.51	
	4	-	. 41	-	. 25	-	-	
4	1	.53	. 86	-	. 75	-	.85	
	2	.36	. 76	.22	.60	-	-74	
	3	-	.66	-	.49	-	.64	
	4	-	-	-	.36	-	-	

Note: GPA = 1 = A's & B's; GPA = 2 = B's & C's; GPA = 3 = C's & D's; GPA = 4 = D's & below;

Results of Quality Model (Southeast and Midwest)

(Father's education greater then HSDG)

				oility of	_		
	Grade Point		5DG		ISDG	н	5JR
Courses	Average	Black		Black		•	
0				-			
	2	.16	.51	.08	.34	. 15	.49
	3	. 11	- 40	- 05	.24	. 10	.37
	4	-	. 28	-	. 16	-	.26
1	1	.30	.70	-	.53	.28	.68
	2	. 17	. 54	.09	.36	. 16	.51
	3	. 12	. 42	.06	.26	. 11	.40
	4	-	.30	-	. 17	-	.28
2	1	.42	.80	.26	.66	. 40	.79
	2	.27	.67	.15	.49	. 25	.65
	3	.19	.56	. 10	.38	. 17	.53
	4	-	.43	-	-	-	-41
3	1	.53	. 86	-	.75	.51	.85
	2	.36	. 76	.22	.60	. 34	.74
	3	.26	.66	.15	.48	. 24	.64
	4	-	-	-	-	-	-
4	1	.66	. 92	. 49	.84	-	.91

Note: GPA = 1 = A's & B's; GPA = 2 = B's & C's; GPA = 3 = C's & D's; GPA = 4 = D's & below;

.38 .77

2

3

.49 .84 .32 .72

.62

.47 .83

.75

Results of Quality Model (Southeast and Midwest)

(Father's education level = HSG)

			Probab	ility of	being	Cat I-	IIIA		
	Grade		5DG		isdG		HSJR		
	Point Average	Black	Cther	Black	Other	Black	Other		
0				. 12					
	2	. 13	. 45	.07	. 28	.12	.42		
	3	.08	. 33	.04	. 20	.08	.31		
	4	-	. 23	.03	. 13	-	.22		
1	1	. 25	. 64	. 14	.46	. 23	.62		
	2	. 14	. 47	.07	.30	.13	.45		
	3	.09	. 36	.05	.21	.08	.34		
	4	-	. 25	-	. 14	.05	.23		
2	1	.36	.76	.21	.60	. 34	.74		
	2	.22	.60	.12	.43	.20	.58		
	3	. 15	.49	.08	.32	. 14	.47		
	4	-	. 36	-	-	-	-		
3	1	.47	.83	.30	.70	.44	.81		
	2	.30	.70	. 17	• 54	.28	.69		
	3	.21	.60	-	.42	. 20	.58		
	4	-	-	-	-	-	-		
4	1	.60	.89	.42	.80	.58	.88		
	2	.43	.80	.27	.66	.41	.79		
	3	.32	.72	-	•55	-	.70		
	4		•	-	-	-	-		

Results of Quality Model (Southeast and Midwest)

(Father's education level less than HSG)

		Probability of being Cat I-IIIA								
	Grade	HSI	DG			5DG		HSJR		
	Average			1	Black	Other	ı			
0	1		.52							
	2	.09	. 35		.04	. 20		. 08	.33	
	3	.06	. 25		.03	. 14		.05	.23	
	4	.03	. 17		.02	.09		.03	. 15	
	1	.18	.54		.09	.36		. 16	.52	
	2	.10	.37		. 05	. 22		.09	.35	
	3	.06	. 27		.03	. 15		.06	.25	
	4	.04	. 18		. 02	. 10		.03	.17	
2	1	.27	.67		. 15	. 49		.25	.65	
	2	.15	.50		.08	. 33		. 14	.48	
	3	. 10	. 38		. 05	. 23		. 09	.36	
	4	-	-		.03	. 15		-	.26	
3	1	.36	. 76		. 22	.60		.34	.74	
	2	.22	.61		. 12	.43		.21	•59	
	3	.15	. 49		.08	. 32		. 14	.47	
	4	-	-		. 05	-		-	-	
4	1	.50	. 84		-	. 72		. 47	.83	
	2	.33	. 73		-	. 57		. 31	.71	
	3	.23	.63		. 13	-		-	.60	
	4	-	-		-	. 33		-	-	

(NHSDG)
Predicted

	N e		ve Positive			
NEG	1	587	1	16	1	603
TRUE	1		1		/	
Pos	1	170	1	26	ı	196
	1		1_			
Total	LĮ	757	ı	42	ı	799

Note: The Quality model correctly classifys 76.74% of the NHSDG.

(HSJR)

Predicted
Positive

		Negati ve		Positive		
NEG	1	978	i	367	I	1345
TRUE	1				1_	
PCS	1	406	1	722	ı	1128
	1		1			
Total	LI	1384	1	1089	1	2473

Note: The Quality model correctly classifys 68.75% of the HSJR.

Classification Tables of Quality Results

(Overall)

Predicted

		Negative		Positive		
NEG	1	2544	1	1125		3669
TRUE	1		1		1_	
Pos	i	1039	ł	2237	1	3276
	1		1			
	1	35 83	1	3362	1	6945

Note: The Quality model correctly classifys 68.8% of the survey respondents.

(HSDG)

Predicted

		Negative		Positive		
NEG	1	950		742		1692
TRUE	1				1_	
PCS	ì	453	ı	1488	1	1941
	1		1			
	1	1403	ı	2230	1	3633

Note: The Quality model correctly classifys 67.11% of the HSDG.

Quality Model Estimates

	Coefficient	Standard Error	Chi Square
Intercept		J. 109	32.02
HSDG	0.7912	0.095	68.94
HSJR	0.6769	0.097	48.34
Black	-1.6608	0.087	362.04
HSG	0.4420	0.067	43.01
Greater than	0.7403	0.071	109.52
Math1	0.0686	0.070	0.95*
Math2	0.6084	0.381	56.77
Math3	1.0463	0.095	122.30
Math4	1.6379	0.135	146.93
Southwest	0.1797	0.071	6.44
Southeast/ Midwest	-0.1797	0.071	6.44
GPA2	-0.6531	0.068	92.34
SPA3	-1.1216	0.086	170.52
3PA4	-1.6420	0.267	37.99

Note: The model chi-square = 1472.09 with 14 d.f.
Asteriks represents insignificance at the 5% level.

<u>APPENDIX H</u> QUALITY HODEL ESTIHATES AND RESULTS

Summary of Variables Quality Model

Variable	Description
Race (2)	A dummy variable whose value is 0 if individual is black and 1 otherwise
Age (6)	Respondents age at survey (16-21)
Region (5)	Respondents residence at survey (Northeast, Northwest, Southwest, West)
Eū Status (3)	Education status of individual at time of survey (HSDG, NHSDG, or HSJR)
Father's ed (3)	Highest level of education obtained by individuals' father at time of survey (less than HS, HSG, Greater than HS)
# Math Courses (5)	Number of math courses passed at time of survey (range 0-4)
3PA (4)	Grade point average at time of survey (A & B, B & C, C & D, D & below)

Note: Army regions were used for overall military service model.

Model Estimates (cont'd)

7	-0.0109	0.3714	0.02*
8	0.0940	0.0808	1.35*
ğ	-0.0380	0.0713	0.17*
10	-0.1464	0.1069	1.88*
11	-0.0648	0.0757	0.73*
12	0.1077	0.0876	1.51*
13	-0.0709	0.0997	0.51*
14	0.0466	0.1205	0.15*
15	-0.0356	0.1213	0.09*
16	-0.0391	0.1340	0.09*
17	0.0633	0.1362	0.22*
18	0.0190	0.1527	0.02*
19	-0.0344	0.1820	0.04*
20	0.1394	0.1841	0.57*

Note: * Denotes insignificance at the 5% level.

Model Estimates (cont'd)

16	0.0916	0.1340	0.47*
17	-0.0164	0.1362	0.01*
18	-0.0889	0.1527	0.34*
19	-0.0475	0.1820	0.07*
20	0.1688	0.1841	0.84*
Pace*region	•		
1	0.0507	0.0372	1.86*
2	0.0727	0.3660	3.94
3	-0.0149	0.0443	0.11*
4	-0.0552	0.0693	0.63*
face*Aye			
1	-0.1264	0.0432	8.56
2	0.0514	0.0459	1.26*
3	0.0786	0.0522	2.27*
4	0.0915	0.0615	2.22*
5	0.1822	0.0651	7.83
Lace*Age*R	egion		
1	0.0850	0.0665	1.63*
2	-0.0823	0.0712	1.34*
3	-0.0381	0.0801	0.23*
Ħ	0.1580	0.0996	2.52*
5	-0.0766	0.1060	0.52*
6	0.0009	0.0662	0.00*

Results of Quality Model (Southwest)
(Father's education greater then HSDG)

			Probal	oility o	f being		IIIA
	Grade Point	HS	DG		HSDG		5JR
	Average	Plack	Other	Black	Other	Black	Other
0	1	.35	. 75	-	-	-	.73
	2	.21	. 59	-	.41	. 19	.57
	3	.14	.48	.07	• 30	-	.45
	4	-	. 35	-	.21	-	.33
1	1	.37	.76	.22	.61	. 35	.75
	2	.23	. 62	.12	-44	.21	.59
	3	.15	.50	.08	. 33	. 14	.48
	4	.10	-	-	. 23	-	.35
2	1	.50	. 85	-	.73	. 48	.84
	2	.34	.73	-	.57	. 32	.72
	3	.24	.63	-	.46	***	.61
	4	-	.51	-	. 33	-	.49
3	1	.61	.90	-	.81	.59	.89
	2	.44	.81	-	. ó8	. 42	.80
	3	.33	. 73	-	.57	-	.71
	4	-	-	-	-	-	-
4	1	.73	. 94	-	38.	.71	.93
	2	.57	. 38	-	.78	. 55	.87
	3	-	. 82	-	.69	-	.81
	4	-	. 74	-	-	-	-

Note: GPA = 1 = A's & B's; GPA = 2 = B's & C's; GPA = 3 = C's & D's; GPA = 4 = D's & below;

LIST OF REFERENCES

- 1. RAND Corporation, N-1297-MFAL, Forecasting Enlisted Supply: Projections for 1979-1990, by R.L. Fernandez, 1979.
- Hosek, J.R., Fernandez, R.L., Grissmer, D.W., <u>Active</u> Enlisted Supply: <u>Propects and Policy Options</u> (<u>The</u> RAND Paper Series), RAND Corporation, 1934.
- Navy Personnel Research and Development Center, NPRDC TR 34-42, A Framework for Integrating Alternative Military Manpower Supply Methods, by J. 1. Borack, 1984.
- 4. Hanssens, D.M., Levien, H.A., "An Econometric Study of Recruitment Marketing in the U.S. Navy", Management Science, Vol. 29, No. 10, pp. 1167-1182, October 1983.
- The Center of Applied Business Research, Duke University, The Impacts of Various Types of Advertising Media, Demographics, and Recruiters on Olality Enlistments: Results from Simultaneous and Recruiters of Recruit Enlistments.
- Navy Personnel Research and Development Center, NPRDC TH 81-16, An Econometric Model of Navy Enlistment Benavior, by B.S. Segal and J.I. Borack, 1981.
- 7. RAND Corporation, R-717-PR, The Importance of Volunteer Status: An Analysis and Reliability Test of Survey Data, by G.L. Brunner, 1971.
- 3. RAND Corporation, R-2468-MEAL, Models of the First-Term Reenlistment Decision, by W.K. Chow and J.M. Polich, 1980.
- S. Ibid, pp. 10-11
- 10. RAND Corporation, N-2076-MIL, <u>Analysis of Youth Cohort Enlistment Intention Data:</u> <u>Progress Report</u>, by B.
- 11. Ibid., p. 7
- 12. Thid., p. 8
- 13. Ibid., pp. 40-41

- 14. Bennett, J.T., Haber, S.Z., The Allocation of Recruiters Among Spatial Areas, The George Washington University, 1974.
- 15. Ibid., p. 650
- 16. Market Facts, Inc., Youth Attitude Fracking Study, Fall 1981, 1982.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5100		2
3.	Professor J.I. Borack, Code 54 ZJ Naval Postgraduate School Monterey, California 93943-5100		2
4.	Professor G.W. Thomas, Code 54 TE Naval Postgraduate School Monterey, California 93943-5100		2
5.	Cpt Gregory D. Citizen P.O. Box 463 Kinder Louisiana 70648		3

END

FILMED

11-85

DTIC